The Rust Programming LLanguage

The Rust Team

2016-10-01

The Rust Programming Language

The Rust Team

2016-10-01

The Rust Programming Language

Introduction
Contributing
Getting Started
Installing Rust
Hello, world!
Hello, Cargo!
Closing Thoughts
Tutorial: Guessing Game
Set up
Processing a Guess
Generating a secret number
Comparing guesses
Looping
Complete!
Syntax and Semantics
Variable Bindings
Patterns
Type annotations
Mutability,
Initializing bindings
Scope and shadowing
Functions
Primitive Types
Booleans
char
Numeric types
Arrays
Slices
str
Tuples
Functions
Comments

if
Loops
Vectors
Ownership
Meta
Ownership
Move semantics
More than ownership
References and Borrowing
Meta
Borrowing
&mut references
The Rules
Lifetimes
Meta
Lifetimes
In structs
Mutability
Interior vs. Exterior Mutability,
Structs
Update syntax
Tuple structs
Unit-like structs
Enums
Constructors as functions
Match
Matching on enums
Patterns
Multiple patterns
Destructuring
Ignoring bindings
ref and ref mut
Ranges
Bindings
Guards
Mix and Match

Method Syntax
Method calls
Chaining method calls
Associated functions
Builder Pattern

Strings

Generics

Traits
Rules for implementing traits
Multiple trait bounds
Where clause
Default methods
Inheritance
Deriving

Drop

if let

Trait Objects

Closures
Syntax
Closures and their environment
Closure implementation
Taking closures as arguments
Function pointers and closures
Returning closures

Universal Function Call Syntax
Angle-bracket Form

Crates and Modules
Basic terminology: Crates and Modules
Defining Modules
Multiple File Crates
Importing External Crates
Exporting a Public Interface
Importing Modules with use

const and static

static
Initializing

Which construct should I use?
Attributes
type_aliases
Casting between types

Coercion

as

transmute
Associated Types
Unsized Types
7Sized
Operators and Overloading
Using operator traits in generic structs
Deref coercions
Macros
Defining a macro
Hygiene
Recursive macros
Debugging macro code
Syntactic requirements

The variable $scrate
The deep end
Common macros
Procedural macros
Raw Pointers
Basics
FFI
References and raw pointers

unsafe
What does ‘safe’ mean?
Unsafe Superpowers

Effective Rust

The Stack and the Heap
Memory_management
The Stack
The Heap

Arguments and borrowing
A complex example
What do other languages do?
Which to use?
Testing
The test attribute
The ignore_attribute
The tests module
The tests_directory,
Documentation tests
Conditional Compilation
cfg_attr
cfgl
Documentation
Iterators
Concurrency,
Error Handling
Table of Contents
The Basics
Working with multiple error types
Standard library_traits used for error handling

The Short Story,
Choosing your Guarantees
Basic pointer types
Cell types
Synchronous types
Composition
FFI
Introduction
Creating a safe interface
Destructors
Callbacks from C code to Rust functions
Linking
Unsafe blocks
Accessing foreign globals

Foreign calling conventions
Interoperability with foreign code
The “nullable pointer optimization”
Calling Rust code from C

EFFI and panics

Borrow and AsRef
Borrow
AsRef
Which should I use?
Release Channels
Overview
Choosing a version
Helping the ecosystem through CI
Using Rust without the standard library,
Nightly Rust
Compiler Plugins
Introduction
Syntax extensions
Lint plugins
Inline Assembly
No stdlib
Intrinsics
Lang items
Advanced linking
Link args
Static linking
Benchmark Tests
Box Syntax and Patterns
Returning Pointers
Slice Patterns
Associated Constants
Custom Allocators
Default Allocator
Switching Allocators
Writing a custom allocator

Custom allocator limitations
Glossary,
Syntax Index
Bibliography,

Introduction

Welcome! This book will teach you about the Rust Programming L.anguage.
Rust is a systems programming language focused on three goals: safety,
speed, and concurrency. It maintains these goals without having a garbage
collector, making it a useful language for a number of use cases other
languages aren’t good at: embedding in other languages, programs with
specific space and time requirements, and writing low-level code, like
device drivers and operating systems. It improves on current languages
targeting this space by having a number of compile-time safety checks that
produce no runtime overhead, while eliminating all data races. Rust also
aims to achieve ‘zero-cost abstractions’ even though some of these
abstractions feel like those of a high-level language. Even then, Rust still

allows precise control like a low-level language would.

“The Rust Programming Language” is split into chapters. This introduction
is the first. After this:

e Getting started - Set up your computer for Rust development.

e Tutorial: Guessing Game - Learn some Rust with a small project.

e Syntax and Semantics - Each bit of Rust, broken down into small
chunks.

o Effective Rust - Higher-level concepts for writing excellent Rust code.

e Nightly Rust - Cutting-edge features that aren’t in stable builds yet.

e Glossary - A reference of terms used in the book.

e Bibliography - Background on Rust’s influences, papers about Rust.

Contributing

The source files from which this book is generated can be found on GitHub.

https://www.rust-lang.org/
https://github.com/rust-lang/rust/tree/master/src/doc/book

Getting Started

This first chapter of the book will get us going with Rust and its tooling.
First, we’ll install Rust. Then, the classic ‘Hello World” program. Finally,
we’ll talk about Cargo, Rust’s build system and package manager.

Installing Rust

The first step to using Rust is to install it. Generally speaking, you’ll need
an Internet connection to run the commands in this section, as we’ll be
downloading Rust from the Internet.

We’ll be showing off a number of commands using a terminal, and those
lines all start with $. You don’t need to type in the $s, they are there to
indicate the start of each command. We’ll see many tutorials and examples
around the web that follow this convention: $ for commands run as our
regular user, and # for commands we should be running as an administrator.

Platform support

The Rust compiler runs on, and compiles to, a great number of platforms,
though not all platforms are equally supported. Rust’s support levels are
organized into three tiers, each with a different set of guarantees.

Platforms are identified by their “target triple” which is the string to inform
the compiler what kind of output should be produced. The columns below
indicate whether the corresponding component works on the specified
platform.

Tier 1

Tier 1 platforms can be thought of as “guaranteed to build and work™.
Specifically they will each satisfy the following requirements:

Automated testing is set up to run tests for the platform.

Landing changes to the rust-lang/rust repository’s master branch is
gated on tests passing.

Official release artifacts are provided for the platform.

Documentation for how to use and how to build the platform is
available.

Target std rustc cargo notes

i686-apple-darwin v v Y 32-bit OSX (10.7+, Lion+)
i686-pc-windows-gnu v ¥ v 32-bit MinGW (Windows 7+)
i686-pc-windows-msvc v Y v 32-bit MSVC (Windows 7+)
i686-unknown-linux-gnu VvV V¥ v 32-bit Linux (2.6.18+)
x86_64-apple-darwin v v Y 64-bit OSX (10.7+, Lion+)

x86 64-pc-windows-gnu v ¥ v 64-bit MinGW (Windows 7+)
x86 64-pc-windows-msve V V¥ v 64-bit MSVC (Windows 7+)
*x86_6d4-unknown-linux- o, /4 64 bit Linux (2.6.18+)

gnu

Tier 2

Tier 2 platforms can be thought of as “guaranteed to build”. Automated
tests are not run so it’s not guaranteed to produce a working build, but
platforms often work to quite a good degree and patches are always
welcome! Specifically, these platforms are required to have each of the
following:

Automated building is set up, but may not be running tests.

Landing changes to the rust-lang/rust repository’s master branch is
gated on platforms building. Note that this means for some platforms
only the standard library is compiled, but for others the full bootstrap
1S run.

Official release artifacts are provided for the platform.

Target std rustc cargo notes

Target

aarch64-apple-ios
aarch64-unknown-linux-gnu
arm-linux-androideabi
arm-unknown-linux-gnueabi

arm-unknown-linux-

gnueabihf
armv7-apple-ios
armv7-unknown-linux-

gnueabihf
armv7s-apple-ios
i386-apple-ios
i586-pc-windows-msvc
mips-unknown-linux-gnu

mips-unknown-linux-musl

mipsel-unknown-linux-gnu

mipsel-unknown-linux-musl

powerpc-unknown-linux-gnu

powerpc64-unknown-linux-—

gnu

powerpc64le-unknown-linux-

gnu

x86 64-apple-ios
x86 64-rumprun-netbsd

x86 64-unknown-freebsd
x86 64-unknown-linux-musl

x86 64-unknown-netbsd

std rustc cargo notes

T S S S U SR SRR

T N NN

4

4

ARMG64 10S

ARMO64 Linux (2.6.18+)
ARM Android

ARM Linux (2.6.18+)

ARM Linux (2.6.18+)
ARM i0S
ARMV7 Linux (2.6.18+)

ARM i0OS

32-bit x86 10S

32-bit Windows w/o SSE
MIPS Linux (2.6.18+)

MIPS Linux with MUSL
MIPS (LE) Linux
(2.6.18+)

MIPS (LE) Linux with
MUSL

PowerPC Linux (2.6.18+)
PPC64 Linux (2.6.18+)

PPC64LE Linux (2.6.18+)

64-bit x86 10S

64-bit NetBSD Rump
Kernel

64-bit FreeBSD
64-bit Linux with MUSL
64-bit NetBSD

Tier 3

Tier 3 platforms are those which Rust has support for, but landing changes
1s not gated on the platform either building or passing tests. Working builds
for these platforms may be spotty as their reliability is often defined in
terms of community contributions. Additionally, release artifacts and
installers are not provided, but there may be community infrastructure
producing these in unofficial locations.

Target std rustc cargo notes
aarché64-linux-android v ARMO64 Android
armv7-linux-androideabi v ARM-v7a Android
i686-linux-android v 32-bit x86 Android
1686-pc-windows-msve (XP) Windows XP support
i686-unknown-freebsd v v v 32-bit FreeBSD
x86_64-pc-windows-msve (XP) v Windows XP support
x86_64-sun-solaris v Y 64-bit Solaris/SunOS
x86 64-unknown-bitrig v v 64-bit Bitrig

x86_ 64-unknown-dragonfly v v 64-bit DragonFlyBSD
%x86_64-unknown-openbsd v v 64-bit OpenBSD

Note that this table can be expanded over time, this isn’t the exhaustive set
of tier 3 platforms that will ever be!

Installing on Linux or Mac

If we’re on Linux or a Mac, all we need to do is open a terminal and type
this:

$ curl -sSf https://static.rust-lang.org/rustup.sh | sh

This will download a script, and start the installation. If it all goes well,
you’ll see this appear:

Rust is ready to roll.

From here, press y for ‘yes’, and then follow the rest of the prompts.
Installing on Windows

If you’re on Windows, please download the appropriate installer.
Uninstalling

Uninstalling Rust is as easy as installing it. On Linux or Mac, run the
uninstall script:

$ sudo /usr/local/lib/rustlib/uninstall.sh

If we used the Windows installer, we can re-run the .msi and it will give us
an uninstall option.

Troubleshooting

If we’ve got Rust installed, we can open up a shell, and type this:

$ rustc --version

You should see the version number, commit hash, and commit date.
If you do, Rust has been installed successfully! Congrats!

If you don’t and you’re on Windows, check that Rust is in your % PATH%
system variable: $ echo %paTH%. If it isn’t, run the installer again, select
“Change” on the “Change, repair, or remove installation” page and ensure
“Add to PATH” is installed on the local hard drive. If you need to configure
your path manually, you can find the Rust executables in a directory like
"C:\Program Files\Rust stable GNU 1l.x\bin".

Rust does not do its own linking, and so you’ll need to have a linker
installed. Doing so will depend on your specific system, consult its
documentation for more details.

https://www.rust-lang.org/install.html

If not, there are a number of places where we can get help. The easiest is
the #rust-beginners IRC channel on irc.mozilla.org and for general
discussion the #rust IRC channel on irc.mozilla.org, which we can access
through Mibbit. Then we’ll be chatting with other Rustaceans (a silly
nickname we call ourselves) who can help us out. Other great resources
include the user’s forum and Stack Overflow.

This installer also installs a copy of the documentation locally, so we can
read it offline. On UNIX systems, /usr/local/share/doc/rust is the
location. On Windows, it’s in a share/doc directory, inside the directory to
which Rust was installed.

Hello, world!

Now that you have Rust installed, we’ll help you write your first Rust
program. It’s traditional when learning a new language to write a little
program to print the text “Hello, world!” to the screen, and in this section,
we’ll follow that tradition.

The nice thing about starting with such a simple program is that you can
quickly verify that your compiler is installed, and that it’s working properly.
Printing information to the screen is also a pretty common thing to do, so
practicing it early on is good.

Note: This book assumes basic familiarity with the command line.
Rust itself makes no specific demands about your editing, tooling, or
where your code lives, so if you prefer an IDE to the command line,
that’s an option. You may want to check out [SolidOak], which was
built specifically with Rust in mind. There are a number of extensions
in development by the community, and the Rust team ships plugins for
[various editors]. Configuring your editor or IDE is out of the scope of
this tutorial, so check the documentation for your specific setup.

Creating a Project File

irc://irc.mozilla.org/#rust-beginners
irc://irc.mozilla.org/#rust
http://chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust-beginners,%23rust
https://users.rust-lang.org/
http://stackoverflow.com/questions/tagged/rust

First, make a file to put your Rust code in. Rust doesn’t care where your
code lives, but for this book, I suggest making a projects directory in your
home directory, and keeping all your projects there. Open a terminal and
enter the following commands to make a directory for this particular
project:

$ mkdir ~/projects

$ cd ~/projects

$ mkdir hello_world
$ cd hello world

Note: If you’re on Windows and not using PowerShell, the ~ may not
work. Consult the documentation for your shell for more details.

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end in a
.rs extension. If you’re using more than one word in your filename, use an
underscore to separate them; for example, you’d use hello_world.rs rather
than helloworld.rs.

Now open the main.rs file you just created, and type the following code:

fn main() {
println!("Hello, world!");

}

Save the file, and go back to your terminal window. On Linux or OSX,
enter the following commands:

$ rustc main.rs
$./main
Hello, world!

In Windows, replace main with main.exe. Regardless of your operating
system, you should see the string Hello, world! print to the terminal. If
you did, then congratulations! You’ve officially written a Rust program.
That makes you a Rust programmer! Welcome.

Anatomy of a Rust Program

Now, let’s go over what just happened in your “Hello, world!” program in
detail. Here’s the first piece of the puzzle:

fn main() {

}

These lines define a function in Rust. The main function is special: it’s the
beginning of every Rust program. The first line says, “I’'m declaring a
function named main that takes no arguments and returns nothing.” If there
were arguments, they would go inside the parentheses ((and)), and
because we aren’t returning anything from this function, we can omit the
return type entirely.

Also note that the function body is wrapped in curly braces ({ and }). Rust
requires these around all function bodies. It’s considered good style to put
the opening curly brace on the same line as the function declaration, with
one space in between.

Inside the main () function:

println!("Hello, world!");

This line does all of the work in this little program: it prints text to the
screen. There are a number of details that are important here. The first is
that it’s indented with four spaces, not tabs.

The second important part is the println! () line. This is calling a Rust
[macro], which is how metaprogramming is done in Rust. If it were calling
a function instead, it would look like this: println() (without the !). We’ll
discuss Rust macros in more detail later, but for now you only need to know
that when you see a ! that means that you’re calling a macro instead of a
normal function.

Next is "Hello, world!" which is a string. Strings are a surprisingly
complicated topic in a systems programming language, and this is a
[statically allocated] string. We pass this string as an argument to
println!, which prints the string to the screen. Easy enough!

The line ends with a semicolon (;). Rust is an expression-oriented
language, which means that most things are expressions, rather than
statements. The ; indicates that this expression is over, and the next one is
ready to begin. Most lines of Rust code end with a ;.

Compiling and Running Are Separate Steps

In “Writing and Running a Rust Program”, we showed you how to run a
newly created program. We’ll break that process down and examine each
step now.

Before running a Rust program, you have to compile it. You can use the
Rust compiler by entering the rustc command and passing it the name of
your source file, like this:

$ rustc main.rs

If you come from a C or C++ background, you’ll notice that this is similar
to gcc or clang. After compiling successfully, Rust should output a binary
executable, which you can see on Linux or OSX by entering the 1s
command in your shell as follows:

$ 1s
main main.rs

On Windows, you’d enter:

$ dir
main.exe
main.rs

This shows we have two files: the source code, with an .rs extension, and
the executable (main.exe on Windows, main everywhere else). All that’s
left to do from here is run the main or main.exe file, like this:

$./main # or .\main.exe on Windows

If main.rs were your “Hello, world!” program, this would print Hello,
world! to your terminal.

If you come from a dynamic language like Ruby, Python, or JavaScript, you
may not be used to compiling and running a program being separate steps.
Rust is an ahead-of-time compiled language, which means that you can
compile a program, give it to someone else, and they can run it even
without Rust installed. If you give someone a .rb or .py or .js file, on the
other hand, they need to have a Ruby, Python, or JavaScript implementation
installed (respectively), but you only need one command to both compile
and run your program. Everything is a tradeoff in language design.

Just compiling with rustc is fine for simple programs, but as your project
grows, you’ll want to be able to manage all of the options your project has,
and make it easy to share your code with other people and projects. Next,
I’1ll introduce you to a tool called Cargo, which will help you write real-
world Rust programs.

Hello, Cargo!

Cargo i1s Rust’s build system and package manager, and Rustaceans use
Cargo to manage their Rust projects. Cargo manages three things: building
your code, downloading the libraries your code depends on, and building
those libraries. We call libraries your code needs ‘dependencies’ since your
code depends on them.

The simplest Rust programs don’t have any dependencies, so right now,
you’d only use the first part of its functionality. As you write more complex
Rust programs, you’ll want to add dependencies, and if you start off using
Cargo, that will be a lot easier to do.

As the vast, vast majority of Rust projects use Cargo, we will assume that
you’re using it for the rest of the book. Cargo comes installed with Rust
itself, if you used the official installers. If you installed Rust through some
other means, you can check if you have Cargo installed by typing:

$ cargo --version

Into a terminal. If you see a version number, great! If you see an error like
‘command not found’, then you should look at the documentation for the

system in which you installed Rust, to determine if Cargo is separate.
Converting to Cargo

Let’s convert the Hello World program to Cargo. To Cargo-fy a project, you
need to do three things:

1. Put your source file in the right directory.

2. Get rid of the old executable (main.exe on Windows, main everywhere
else).

3. Make a Cargo configuration file.

Let’s get started!

Creating a Source Directory and Removing the Old Executable

First, go back to your terminal, move to your hello_world directory, and
enter the following commands:

$ mkdir src
$ mv main.rs src/main.rs # or 'move main.rs src/main.rs' on Windows
$ rm main # or 'del main.exe' on Windows

Cargo expects your source files to live inside a src directory, so do that first.
This leaves the top-level project directory (in this case, hello_world) for
READMEgs, license information, and anything else not related to your code.
In this way, using Cargo helps you keep your projects nice and tidy. There’s
a place for everything, and everything is in its place.

Now, move main.rs into the src directory, and delete the compiled file you
created with rustc. As usual, replace main with main.exe if you’re on
Windows.

This example retains main.rs as the source filename because it’s creating
an executable. If you wanted to make a library instead, you’d name the file
lib.rs. This convention is used by Cargo to successfully compile your
projects, but it can be overridden if you wish.

Creating a Configuration File

Next, create a new file inside your hello_world directory, and call it

Cargo.toml.

Make sure to capitalize the ¢ in cargo.toml, or Cargo won’t know what to
do with the configuration file.

This file is in the [TOML] (Tom’s Obvious, Minimal Language) format.
TOML is similar to INI, but has some extra goodies, and is used as Cargo’s
configuration format.

Inside this file, type the following information:

[package]

name = "hello_world"

version = "0.0.1"

authors = ["Your name <youlexample.com>"]

The first line, [package], indicates that the following statements are
configuring a package. As we add more information to this file, we’ll add
other sections, but for now, we only have the package configuration.

The other three lines set the three bits of configuration that Cargo needs to
know to compile your program: its name, what version it is, and who wrote
it.

Once you’ve added this information to the Cargo.toml file, save it to finish
creating the configuration file.

Building and Running a Cargo Project

With your Cargo.toml file in place in your project’s root directory, you
should be ready to build and run your Hello World program! To do so, enter
the following commands:

$ cargo build
Compiling hello world v0.0.1 (file:///home/yourname/projects/hello_world)

$./target/debug/hello world
Hello, world!

Bam! If all goes well, Hello, world! should print to the terminal once
more.

You just built a project with cargo build and ran it with
./target/debug/hello world, but you can actually do both in one step
with cargo run as follows:

$ cargo run
Running " target/debug/hello world"
Hello, world!

Notice that this example didn’t re-build the project. Cargo figured out that
the file hasn’t changed, and so it just ran the binary. If you’d modified your
source code, Cargo would have rebuilt the project before running it, and
you would have seen something like this:

$ cargo run
Compiling hello world v0.0.1 (file:///home/yourname/projects/hello world)
Running " target/debug/hello _world"
Hello, world!

Cargo checks to see if any of your project’s files have been modified, and
only rebuilds your project if they’ve changed since the last time you built it.

With simple projects, Cargo doesn’t bring a whole lot over just using rustc,
but it will become useful in the future. This is especially true when you start
using crates; these are synonymous with a ‘library’ or ‘package’ in other
programming languages. For complex projects composed of multiple crates,
it’s much easier to let Cargo coordinate the build. Using Cargo, you can run
cargo build, and it should work the right way.

Building for Release

When your project is ready for release, you can use cargo build --
release to compile your project with optimizations. These optimizations
make your Rust code run faster, but turning them on makes your program

take longer to compile. This is why there are two different profiles, one for
development, and one for building the final program you’ll give to a user.

What Is That cargo. 1ock?

Running cargo build also causes Cargo to create a new file called
Cargo.lock, which looks like this:

[root]
name = "hello world"
version = "0.0.1"

Cargo uses the Cargo.lock file to keep track of dependencies in your
application. This is the Hello World project’s Cargo.lock file. This project
doesn’t have dependencies, so the file is a bit sparse. Realistically, you
won’t ever need to touch this file yourself; just let Cargo handle it.

That’s it! If you’ve been following along, you should have successfully
built hello world with Cargo.

Even though the project is simple, it now uses much of the real tooling
you’ll use for the rest of your Rust career. In fact, you can expect to start
virtually all Rust projects with some variation on the following commands:

$ git clone someurl.com/foo
$ cd foo
$ cargo build

Making A New Cargo Project the Easy Way

You don’t have to go through that previous process every time you want to
start a new project! Cargo can quickly make a bare-bones project directory
that you can start developing in right away.

To start a new project with Cargo, enter cargo new at the command line:

$ cargo new hello_world --bin

This command passes --bin because the goal is to get straight to making an
executable application, as opposed to a library. Executables are often called
binaries (as in /usr/bin, if you’re on a Unix system).

Cargo has generated two files and one directory for us: a cargo.toml and a
src directory with a main.rs file inside. These should look familiar, they’re
exactly what we created by hand, above.

This output is all you need to get started. First, open cargo.toml. It should
look something like this:

[package]
name = "hello world"

version "0.1.0"
authors ["Your Name <you@example.com>"]

[dependencies]

Do not worry about the [dependencies] line, we will come back to it later.

Cargo has populated Cargo.toml with reasonable defaults based on the
arguments you gave it and your git global configuration. You may notice
that Cargo has also initialized the hello world directory as a git
repository.

Here’s what should be in sre/main.rs:

fn main() {
println!("Hello, world!");

}

Cargo has generated a “Hello World!” for you, and you’re ready to start
coding!

Note: If you want to look at Cargo in more detail, check out the official
[Cargo guide], which covers all of its features.

Closing Thoughts

This chapter covered the basics that will serve you well through the rest of
this book, and the rest of your time with Rust. Now that you’ve got the tools
down, we’ll cover more about the Rust language itself.

You have two options: Dive into a project with ‘Tutorial: Guessing Game’,
or start from the bottom and work your way up with ‘Syntax and
Semantics’. More experienced systems programmers will probably prefer
‘Tutorial: Guessing Game’, while those from dynamic backgrounds may
enjoy either. Different people learn differently! Choose whatever’s right for
you.

Tutorial: Guessing Game

Let’s learn some Rust! For our first project, we’ll implement a classic
beginner programming problem: the guessing game. Here’s how it works:
Our program will generate a random integer between one and a hundred. It
will then prompt us to enter a guess. Upon entering our guess, it will tell us
if we’re too low or too high. Once we guess correctly, it will congratulate
us. Sounds good?

Along the way, we’ll learn a little bit about Rust. The next chapter, ‘Syntax
and Semantics’, will dive deeper into each part.

Set up

Let’s set up a new project. Go to your projects directory. Remember how
we had to create our directory structure and a cargo.toml for
hello_world? Cargo has a command that does that for us. Let’s give it a
shot:

$ cd ~/projects
$ cargo new guessing game --bin
$ cd guessing_game

We pass the name of our project to cargo new, and then the --bin flag,
since we’re making a binary, rather than a library.

Check out the generated cargo.toml:

[package]

version "0.1.0"

name = "guessing game"
authors = ["Your Name <youl@example.com>"]

Cargo gets this information from your environment. If it’s not correct, go
ahead and fix that.

Finally, Cargo generated a ‘Hello, world!” for us. Check out src/main.rs:

fn main() {
println!("Hello, world!");

}

Let’s try compiling what Cargo gave us:

$ cargo build
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing_game)

Excellent! Open up your src/main.rs again. We’ll be writing all of our
code in this file.

Before we move on, let me show you one more Cargo command: run.
cargo run is kind of like cargo build, but it also then runs the produced
executable. Try it out:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing_game)
Running " target/debug/guessing game"
Hello, world!

Great! The run command comes in handy when you need to rapidly iterate
on a project. Our game is such a project, we need to quickly test each
iteration before moving on to the next one.

Processing a Guess

Let’s get to it! The first thing we need to do for our guessing game is allow
our player to input a guess. Put this in your src/main.rs:

use std::io;

fn main() {
printin!("Guess the number!");

println!("Please input your guess.");
let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

println!("You guessed: {}", guess);

There’s a lot here! Let’s go over it, bit by bit.

use std::io;

We’ll need to take user input, and then print the result as output. As such,
we need the io library from the standard library. Rust only imports a few
things by default into every program, the ‘prelude’. If it’s not in the prelude,
you’ll have to use it directly. There is also a second ‘prelude’, the io
prelude, which serves a similar function: you import it, and it imports a
number of useful, io-related things.

fn main() {

As you’ve seen before, the main() function is the entry point into your
program. The £n syntax declares a new function, the ()s indicate that there
are no arguments, and { starts the body of the function. Because we didn’t
include a return type, it’s assumed to be (), an empty tuple.

println!("Guess the number!");

println!("Please input your guess.");

We previously learned that println! () is a macro that prints a string to the
screen.

let mut guess = String::new();

Now we’re getting interesting! There’s a lot going on in this little line. The
first thing to notice is that this is a let statement, which is used to create
‘variable bindings’. They take this form:

let foo = bar;

This will create a new binding named foo, and bind it to the value bar. In
many languages, this is called a ‘variable’, but Rust’s variable bindings
have a few tricks up their sleeves.

For example, they’re immutable by default. That’s why our example uses
mut: it makes a binding mutable, rather than immutable. 1et doesn’t take a

http://doc.rust-lang.org/std/prelude/index.html
http://doc.rust-lang.org/std/io/prelude/index.html

name on the left hand side of the assignment, it actually accepts a ‘pattern’.
We’ll use patterns later. It’s easy enough to use for now:

let foo = 5; // immutable.
let mut bar = 5; // mutable

Oh, and // will start a comment, until the end of the line. Rust ignores
everything in comments.

So now we know that let mut guess will introduce a mutable binding
named guess, but we have to look at the other side of the = for what it’s
bound to: string: :new().

String 1S a string type, provided by the standard library. A string is a
growable, UTF-8 encoded bit of text.

The ::new() syntax uses :: because this is an ‘associated function’ of a
particular type. That is to say, it’s associated with string itself, rather than
a particular instance of a String. Some languages call this a ‘static
method’.

This function is named new(), because it creates a new, empty String.
You’ll find a new() function on many types, as it’s a common name for
making a new value of some kind.

Let’s move forward:

io::stdin().read_ line(&mut guess)
.expect("Failed to read line");

That’s a lot more! Let’s go bit-by-bit. The first line has two parts. Here’s the
first:

io::stdin()

Remember how we used std::io on the first line of the program? We’re
now calling an associated function on it. If we didn’t use std::io, we
could have written this line as std::io::stdin().

http://doc.rust-lang.org/std/string/struct.String.html

This particular function returns a handle to the standard input for your
terminal. More specifically, a std::io::Stdin.

The next part will use this handle to get input from the user:

.read line(&mut guess)

Here, we call the read line() method on our handle. Methods are like
associated functions, but are only available on a particular instance of a
type, rather than the type itself. We're also passing one argument to
read line(): &mut guess.

Remember how we bound guess above? We said it was mutable. However,
read line doesn’t take a string as an argument: it takes a smut String.
Rust has a feature called ‘references’, which allows you to have multiple
references to one piece of data, which can reduce copying. References are a
complex feature, as one of Rust’s major selling points is how safe and easy
it is to use references. We don’t need to know a lot of those details to finish
our program right now, though. For now, all we need to know is that like
let bindings, references are immutable by default. Hence, we need to write
smut guess, rather than sguess.

Why does read line() take a mutable reference to a string? Its job is to
take what the user types into standard input, and place that into a string. So
it takes that string as an argument, and in order to add the input, it needs to
be mutable.

But we’re not quite done with this line of code, though. While it’s a single
line of text, it’s only the first part of the single logical line of code:

.expect("Failed to read line");

When you call a method with the .foo() syntax, you may introduce a
newline and other whitespace. This helps you split up long lines. We could
have done:

io::stdin().read_line(&mut guess).expect('"failed to read line");

http://doc.rust-lang.org/std/io/struct.Stdin.html
http://doc.rust-lang.org/std/io/struct.Stdin.html#method.read_line

But that gets hard to read. So we’ve split it up, two lines for two method
calls. We already talked about read line(), but what about expect()?
Well, we already mentioned that read_1line() puts what the user types into
the smut string we pass it. But it also returns a value: in this case, an
io::Result. Rust has a number of types named Result in its standard
library: a generic Result, and then specific versions for sub-libraries, like

io::Result.

The purpose of these Result types is to encode error handling information.
Values of the result type, like any type, have methods defined on them. In
this case, io: :Result has an expect ()_method that takes a value it’s called
on, and if it isn’t a successful one, panic!s with a message you passed it. A
panic! like this will cause our program to crash, displaying the message.

If we leave off calling this method, our program will compile, but we’ll get
a warning:

$ cargo build

Compiling guessing game v0.1.0 (file:///home/you/projects/guessing_game)
src/main.rs:10:5: 10:39 warning: unused result which must be used,
#[warn(unused must use)] on by default
src/main.rs:10 io::stdin().read line(&mut guess);

Rust warns us that we haven’t used the result value. This warning comes
from a special annotation that io: :Result has. Rust is trying to tell you that
you haven’t handled a possible error. The right way to suppress the error is
to actually write error handling. Luckily, if we want to crash if there’s a
problem, we can use expect (). If we can recover from the error somehow,
we’d do something else, but we’ll save that for a future project.

There’s only one line of this first example left:

println!("You guessed: {}", guess);

}

This prints out the string we saved our input in. The {}s are a placeholder,
and so we pass it guess as an argument. If we had multiple {}s, we would
pass multiple arguments:

http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html#method.expect

let x
let y

5;
10;

println!("x and y: {} and {}", x, Y);
Easy.

Anyway, that’s the tour. We can run what we have with cargo run:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
Running " target/debug/guessing game®
Guess the number!
Please input your guess.
6
You guessed: 6

All right! Our first part is done: we can get input from the keyboard, and
then print it back out.

Generating a secret number

Next, we need to generate a secret number. Rust does not yet include
random number functionality in its standard library. The Rust team does,
however, provide a rand crate. A ‘crate’ is a package of Rust code. We’ve
been building a ‘binary crate’, which is an executable. rand is a ‘library
crate’, which contains code that’s intended to be used with other programs.

Using external crates is where Cargo really shines. Before we can write the
code using rand, we need to modify our cargo.toml. Open it up, and add
these few lines at the bottom:

[dependencies]

rand="0.3.0"

The [dependencies] section of cargo.toml is like the [package] section:
everything that follows it is part of it, until the next section starts. Cargo
uses the dependencies section to know what dependencies on external
crates you have, and what versions you require. In this case, we’ve specified
version 0.3.0, which Cargo understands to be any release that’s compatible
with this specific version. Cargo understands Semantic Versioning, which is

https://crates.io/crates/rand
http://semver.org/

a standard for writing version numbers. A bare number like above is
actually shorthand for ~0.3.0, meaning “anything compatible with 0.3.0”.
If we wanted to use only 0.3.0 exactly, we could say rand="=0.3.0" (note
the two equal signs). And if we wanted to use the latest version we could
use rand="*". We could also use a range of versions. Cargo’s
documentation contains more details.

Now, without changing any of our code, let’s build our project:

$ cargo build

Updating registry ~https://github.com/rust-lang/crates.io-index”
Downloading rand v0.3.8
Downloading libc v0.1.6

Compiling libc v0.1.6

Compiling rand v0.3.8

Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)

(You may see different versions, of course.)

Lots of new output! Now that we have an external dependency, Cargo
fetches the latest versions of everything from the registry, which is a copy
of data from Crates.io. Crates.io is where people in the Rust ecosystem post
their open source Rust projects for others to use.

After updating the registry, Cargo checks our [dependencies] and
downloads any we don’t have yet. In this case, while we only said we
wanted to depend on rand, we’ve also grabbed a copy of libec. This is
because rand depends on libc to work. After downloading them, it
compiles them, and then compiles our project.

If we run cargo build again, we’ll get different output:

$ cargo build

That’s right, no output! Cargo knows that our project has been built, and
that all of its dependencies are built, and so there’s no reason to do all that
stuff. With nothing to do, it simply exits. If we open up src/main.rs again,
make a trivial change, and then save it again, we’ll only see one line:

$ cargo build
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing_game)

http://doc.crates.io/specifying-dependencies.html
https://crates.io/

So, we told Cargo we wanted any 0.3.x version of rand, and so it fetched
the latest version at the time this was written, v0.3.8. But what happens
when next week, version v0.3.9 comes out, with an important bugfix?
While getting bugfixes is important, what if 0.3.9 contains a regression that
breaks our code?

The answer to this problem is the cargo.lock file you’ll now find in your
project directory. When you build your project for the first time, Cargo
figures out all of the versions that fit your criteria, and then writes them to
the cargo.lock file. When you build your project in the future, Cargo will
see that the cargo.lock file exists, and then use that specific version rather
than do all the work of figuring out versions again. This lets you have a
repeatable build automatically. In other words, we’ll stay at 0.3.8 until we
explicitly upgrade, and so will anyone who we share our code with, thanks
to the lock file.

What about when we do want to use vo0.3.9? Cargo has another command,
update, which says ‘ignore the lock, figure out all the latest versions that fit
what we’ve specified. If that works, write those versions out to the lock
file’. But, by default, Cargo will only look for versions larger than 0.3.0
and smaller than 0.4.0. If we want to move to 0.4.x, we’d have to update
the cargo.toml directly. When we do, the next time we cargo build,
Cargo will update the index and re-evaluate our rand requirements.

There’s a lot more to say about Cargo and its ecosystem, but for now, that’s
all we need to know. Cargo makes it really easy to re-use libraries, and so
Rustaceans tend to write smaller projects which are assembled out of a
number of sub-packages.

Let’s get on to actually using rand. Here’s our next step:

extern crate rand;

use std::io;
use rand::Rng;

fn main() {
println!("Guess the number!");

http://doc.crates.io/
http://doc.crates.io/crates-io.html

let secret number = rand::thread rng().gen range(l, 101);
printlin!("The secret number is: {}", secret number);
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("failed to read line");

println!("You guessed: {}", guess);

The first thing we’ve done is change the first line. It now says extern
crate rand. Because we declared rand in our [dependencies], we can use
extern crate to let Rust know we’ll be making use of it. This also does the
equivalent of a use rand; as well, so we can make use of anything in the
rand crate by prefixing it with rand: :.

Next, we added another use line: use rand::Rng. We’re going to use a
method in a moment, and it requires that Rng be in scope to work. The basic
idea is this: methods are defined on something called ‘traits’, and for the
method to work, it needs the trait to be in scope. For more about the details,
read the traits section.

There are two other lines we added, in the middle:

let secret number = rand::thread rng().gen range(l, 101);

printlin!("The secret number is: {}", secret number);

We use the rand::thread rng() function to get a copy of the random
number generator, which is local to the particular thread of execution we’re
in. Because we use rand::Rng’d above, it has a gen range() method
available. This method takes two arguments, and generates a number
between them. It’s inclusive on the lower bound, but exclusive on the upper
bound, so we need 1 and 101 to get a number ranging from one to a
hundred.

The second line prints out the secret number. This is useful while we’re
developing our program, so we can easily test it out. But we’ll be deleting it

for the final version. It’s not much of a game if it prints out the answer when
you start it up!

Try running our new program a few times:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
Running " target/debug/guessing game"
Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4
$ cargo run
Running " target/debug/guessing game"
Guess the number!
The secret number is: 83
Please input your guess.
5
You guessed: 5

Great! Next up: comparing our guess to the secret number.

Comparing guesses

Now that we’ve got user input, let’s compare our guess to the secret
number. Here’s our next step, though it doesn’t quite compile yet:

extern crate rand;
use std::io;
use std::cmp::0rdering;

use rand::Rng;

fn main() {
println!("Guess the number!");

let secret number = rand::thread rng().gen range(l, 101);
printlin!("The secret number is: {}", secret number);
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("failed to read line");

println!("You guessed: {}", guess);

match guess.cmp(&secret number) {

Ordering::Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!"),
Ordering: :Equal => println!("You win!"),

A few new bits here. The first is another use. We bring a type called
std: :cmp: :0rdering into scope. Then, five new lines at the bottom that use
it:

match guess.cmp(&secret_number) {

Ordering: :Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering: :Equal => println!("You win!"),

The cmp () method can be called on anything that can be compared, and it
takes a reference to the thing you want to compare it to. It returns the
Ordering type we used earlier. We use a match statement to determine
exactly what kind of ordering it is. Ordering iS an enum, short for
‘enumeration’, which looks like this:

enum Foo {
Bar,
Baz,

With this definition, anything of type Foo can be either a Foo::Bar or a
Foo::Baz. We use the :: to indicate the namespace for a particular enum
variant.

The ordering enum has three possible variants: Less, Equal, and Greater.
The match statement takes a value of a type, and lets you create an ‘arm’ for
each possible value. Since we have three types of ordering, we have three
arms:

match guess.cmp(&secret number) {
Ordering: :Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!"),
Ordering: :Equal => println!("You win!"),

http://doc.rust-lang.org/std/cmp/enum.Ordering.html

If it’s Less, we print Too small!, if it’s Greater, Too big!, and if Equal,
You win!.match is really useful, and is used often in Rust.

I did mention that this won’t quite compile yet, though. Let’s try it:

$ cargo build

Compiling guessing game v0.1.0 (file:///home/you/projects/guessing_ game)
src/main.rs:28:21: 28:35 error: mismatched types:
expected " &collections::string::String” ,

found " &
(expected struct ~collections::string::String” ,
found integral variable) [E0308]
src/main.rs:28 match guess.cmp(&secret number) {

error: aborting due to previous error
Could not compile " guessing game .

Whew! This i1s a big error. The core of it is that we have ‘mismatched
types’. Rust has a strong, static type system. However, it also has type
inference. When we wrote let guess = String::new(), Rust was able to
infer that guess should be a string, and so it doesn’t make us write out the
type. And with our secret_number, there are a number of types which can
have a value between one and a hundred: i32, a thirty-two-bit number, or
u32, an unsigned thirty-two-bit number, or i64, a sixty-four-bit number or
others. So far, that hasn’t mattered, and so Rust defaults to an i32.
However, here, Rust doesn’t know how to compare the guess and the
secret number. They need to be the same type. Ultimately, we want to
convert the sString we read as input into a real number type, for
comparison. We can do that with two more lines. Here’s our new program:

extern crate rand;
use std::io;
use std::cmp::0rdering;

use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(l, 101);
println!("The secret number is: {}", secret_ number);
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("failed to read line");

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret number) {
Ordering::Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!"),
Ordering: :Equal => println!("You win!"),

The new two lines:

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

Wait a minute, [thought we already had a guess? We do, but Rust allows us
to ‘shadow’ the previous guess with a new one. This is often used in this
exact situation, where guess starts as a string, but we want to convert it to
an u32. Shadowing lets us re-use the guess name, rather than forcing us to
come up with two unique names like guess_str and guess, or something
else.

We bind guess to an expression that looks like something we wrote earlier:

guess.trim().parse()

Here, guess refers to the old guess, the one that was a string with our
input in it. The trim() method on strings will eliminate any white space at
the beginning and end of our string. This is important, as we had to press
the ‘return’ key to satisfy read_line(). This means that if we type 5 and hit
return, guess looks like this: 5\n. The \n represents ‘newline’, the enter
key. trim() gets rid of this, leaving our string with only the 5. The parse().
method on strings parses a string into some kind of number. Since it can
parse a variety of numbers, we need to give Rust a hint as to the exact type
of number we want. Hence, let guess: u32. The colon (:) after guess
tells Rust we’re going to annotate its type. u32 is an unsigned, thirty-two bit

http://doc.rust-lang.org/std/primitive.str.html#method.parse

integer. Rust has a number of built-in number types, but we’ve chosen u32.
It’s a good default choice for a small positive number.

Just like read line(), our call to parse() could cause an error. What if our
string contained A = %? There’d be no way to convert that to a number. As
such, we’ll do the same thing we did with read line(): use the expect ()
method to crash if there’s an error.

Let’s try our program out!

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing_game)
Running ~target/guessing_ game®
Guess the number!
The secret number is: 58
Please input your guess.
76
You guessed: 76
Too big!

Nice! You can see I even added spaces before my guess, and it still figured
out that I guessed 76. Run the program a few times, and verify that guessing
the number works, as well as guessing a number too small.

Now we’ve got most of the game working, but we can only make one
guess. Let’s change that by adding loops!

Looping

The 1oop keyword gives us an infinite loop. Let’s add that in:

extern crate rand;
use std::io;
use std::cmp::0rdering;

use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread rng().gen_range(l, 101);
printlin!("The secret number is: {}", secret number);

loop {

println!("Please input your guess.");
let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("failed to read line");

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret number) {

Ordering::Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!"),
Ordering: :Equal => println!("You win!"),

And try it out. But wait, didn’t we just add an infinite loop? Yup. Remember
our discussion about parse()? If we give a non-number answer, we’ll
panic! and quit. Observe:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
Running " target/guessing game”
Guess the number!
The secret number is: 59
Please input your guess.
45
You guessed: 45
Too small!
Please input your guess.
60
You guessed: 60
Too big!
Please input your guess.
59
You guessed: 59
You win!
Please input your guess.
quit
thread 'main' panicked at 'Please type a number!'

Ha! quit actually quits. As does any other non-number input. Well, this is
suboptimal to say the least. First, let’s actually quit when you win the game:

extern crate rand;

use std::io;
use std::cmp::0rdering;

use rand::Rng;

fn main() {
println!("Guess the number!");

let secret number = rand::thread rng().gen range(l, 101);
printlin!("The secret number is: {}", secret number);

loop {
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("failed to read line");

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret number) {

Ordering::Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!"),
Ordering: :Equal => {

println!("You win!");

break;
}

By adding the break line after the vou win!, we’ll exit the loop when we
win. Exiting the loop also means exiting the program, since it’s the last
thing in main(). We have only one more tweak to make: when someone
inputs a non-number, we don’t want to quit, we want to ignore it. We can do

that like this:

extern crate rand;
use std::io;
use std::cmp::0rdering;

use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(l, 101);

println!("The secret number is: {}", secret_number);

loop {
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read line(&mut guess)
.expect("failed to read line");

let guess: u32 = match guess.trim().parse() {
Ok (num) => num,
Err(_) => continue,

b
println!("You guessed: {}", guess);

match guess.cmp(&secret number) {

Ordering: :Less => println!("Too small!"),
Ordering: :Greater => println!("Too big!"),
Ordering: :Equal => {

println!("You win!");

break;

These are the lines that changed:

let guess: u32 = match guess.trim().parse() {
Ok (num) => num,
Err(_) => continue,

b

This is how you generally move from ‘crash on error’ to ‘actually handle
the error’, by switching from expect() to a match statement. A Result is
returned by parse(), this is an enum like ordering, but in this case, each
variant has some data associated with it: ok is a success, and Err 1s a failure.
Each contains more information: the successfully parsed integer, or an error
type. In this case, we match on Ok (num), which sets the name num to the
unwrapped ok value (the integer), and then we return it on the right-hand
side. In the Err case, we don’t care what kind of error it is, so we just use
the catch all _ instead of a name. This catches everything that isn’t ok, and
continue lets us move to the next iteration of the loop; in effect, this
enables us to ignore all errors and continue with our program.

Now we should be good! Let’s try:

$ cargo run
Compiling guessing game v0.1.0 (file:///home/you/projects/guessing game)
Running " target/guessing game”
Guess the number!
The secret number is: 61
Please input your guess.
10
You guessed: 10
Too small!
Please input your guess.
99
You guessed: 99
Too big!
Please input your guess.
foo
Please input your guess.
61
You guessed: 61
You win!

Awesome! With one tiny last tweak, we have finished the guessing game.
Can you think of what it is? That’s right, we don’t want to print out the
secret number. It was good for testing, but it kind of ruins the game. Here’s
our final source:

extern crate rand;
use std::io;

use std::cmp::0rdering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(l, 101);

loop {
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("failed to read line");

let guess: u32 = match guess.trim().parse() {
Ok (num) => num,
Err(_) => continue,

b
println!("You guessed: {}", guess);

match guess.cmp(&secret number) {
Ordering::Less => println!("Too small!"),

Ordering: :Greater => println!("Too big!"),

Ordering: :Equal => {
println!("You win!");
break;

}

}
}
}
Complete!

This project showed you a lot: let, match, methods, associated functions,
using external crates, and more.

At this point, you have successfully built the Guessing Game!
Congratulations!

Syntax and Semantics

This chapter breaks Rust down into small chunks, one for each concept.

If you’d like to learn Rust from the bottom up, reading this in order is a
great way to do that.

These sections also form a reference for each concept, so if you’re reading
another tutorial and find something confusing, you can find it explained
somewhere in here.

Variable Bindings

Virtually every non-‘Hello World” Rust program uses variable bindings.
They bind some value to a name, so it can be used later. let is used to
introduce a binding, like this:

fn main() {
let x = 5;
}

Putting fn main() { in each example is a bit tedious, so we’ll leave that
out in the future. If you’re following along, make sure to edit your main()
function, rather than leaving it off. Otherwise, you’ll get an error.

Patterns

In many languages, a variable binding would be called a variable, but
Rust’s variable bindings have a few tricks up their sleeves. For example the
left-hand side of a let statement is a ‘pattern’, not a variable name. This
means we can do things like:

let (x, y) = (1, 2);

After this statement is evaluated, x will be one, and y will be two. Patterns
are really powerful, and have their own section in the book. We don’t need

those features for now, so we’ll keep this in the back of our minds as we go
forward.

Type annotations

Rust is a statically typed language, which means that we specify our types
up front, and they’re checked at compile time. So why does our first
example compile? Well, Rust has this thing called ‘type inference’. If it can
figure out what the type of something is, Rust doesn’t require you to
explicitly type it out.

We can add the type if we want to, though. Types come after a colon (:):

let x: i32 = 5;

If I asked you to read this out loud to the rest of the class, you’d say “x is a
binding with the type i32 and the value five.”

In this case we chose to represent x as a 32-bit signed integer. Rust has
many different primitive integer types. They begin with i for signed
integers and u for unsigned integers. The possible integer sizes are 8, 16,
32, and 64 bits.

In future examples, we may annotate the type in a comment. The examples
will look like this:

fn main() {
let x = 5; // x: 132
}

Note the similarities between this annotation and the syntax you use with
let. Including these kinds of comments is not idiomatic Rust, but we’ll
occasionally include them to help you understand what the types that Rust
infers are.

Mutability

By default, bindings are immutable. This code will not compile:

let x = 5;
x = 10;

It will give you this error:

error: re-assignment of immutable variable “x~

If you want a binding to be mutable, you can use mut:

let mut x = 5; // mut x: 132
x = 10;

There is no single reason that bindings are immutable by default, but we
can think about it through one of Rust’s primary focuses: safety. If you
forget to say mut, the compiler will catch it, and let you know that you have
mutated something you may not have intended to mutate. If bindings were
mutable by default, the compiler would not be able to tell you this. If you
did intend mutation, then the solution is quite easy: add mut.

There are other good reasons to avoid mutable state when possible, but
they’re out of the scope of this guide. In general, you can often avoid
explicit mutation, and so it is preferable in Rust. That said, sometimes,
mutation is what you need, so it’s not verboten.

Initializing bindings

Rust variable bindings have one more aspect that differs from other
languages: bindings are required to be initialized with a value before you’re
allowed to use them.

Let’s try it out. Change your src/main.rs file to look like this:

fn main() {
let x: i32;

println!("Hello world!");
}

You can use cargo build on the command line to build it. You’ll get a
warning, but it will still print “Hello, world!”:

Compiling hello world v0.0.1 (file:///home/you/projects/hello world)
src/main.rs:2:9: 2:10 warning: unused variable: “x°, #[warn(unused variables)]
on by default
src/main.rs:2 let x: 132;

A

Rust warns us that we never use the variable binding, but since we never
use it, no harm, no foul. Things change if we try to actually use this x,
however. Let’s do that. Change your program to look like this:

fn main() {
let x: i32;

println!("The value of x is: {}", x);

And try to build it. You’ll get an error:

$ cargo build
Compiling hello world v0.0.1 (file:///home/you/projects/hello_world)

src/main.rs:4:39: 4:40 error: use of possibly uninitialized variable: ~x
src/main.rs:4 println! ("The value of x is: {}", x);

~

note: in expansion of format args!

<std macros>:2:23: 2:77 note: expansion site

<std macros>:1:1: 3:2 note: in expansion of println!
src/main.rs:4:5: 4:42 note: expansion site

error: aborting due to previous error

Could not compile ~hello world .

Rust will not let us use a value that has not been initialized.
Let take a minute to talk about this stuff we’ve added to printin!.

If you include two curly braces ({}, some call them moustaches...) in your
string to print, Rust will interpret this as a request to interpolate some sort
of value. String interpolation is a computer science term that means “stick
in the middle of a string.” We add a comma, and then x, to indicate that we
want x to be the value we’re interpolating. The comma is used to separate
arguments we pass to functions and macros, if you’re passing more than
one.

When you use the curly braces, Rust will attempt to display the value in a
meaningful way by checking out its type. If you want to specify the format

in a more detailed manner, there are a wide number of options available.
For now, we’ll stick to the default: integers aren’t very complicated to print.

Scope and shadowing

Let’s get back to bindings. Variable bindings have a scope - they are
constrained to live in a block they were defined in. A block is a collection
of statements enclosed by { and }. Function definitions are also blocks! In
the following example we define two variable bindings, x and y, which live
in different blocks. x can be accessed from inside the fn main() {} block,
while y can be accessed only from inside the inner block:

fn main() {
let x: 132 = 17;
{
let y: i32 = 3;
println!("The value of x is {} and value of y is {}", x, V);
}

println!("The value of x is {} and value of y is {}", x, y); // This won't work

The first printlnt! would print “The value of x is 17 and the value of y is
3”, but this example cannot be compiled successfully, because the second
println! cannot access the value of y, since it is not in scope anymore.
Instead we get this error:

$ cargo build
Compiling hello v0.1.0 (file:///home/you/projects/hello_world)
main.rs:7:62: 7:63 error: unresolved name "y . Did you mean "X ? [E0425]
main.rs:7 println! ("The value of x is {} and value of y is {}", X, y); // This wc
L 't work
note: in expansion of format args!
<std macros>:2:25: 2:56 note: expansion site
<std macros>:1:1: 2:62 note: in expansion of print!
<std macros>:3:1: 3:54 note: expansion site
<std macros>:1
main.rs:7:5: 7
main.rs:7:62: 7:63 help: run “rustc --explain E0425° to see a detailed explanation
error: aborting due to previous error
Could not compile “hello™ .

:tl: 3:58 note: in expansion of println!
:65 note: expansion site

To learn more, run the command again with --verbose.

http://doc.rust-lang.org/std/fmt/index.html

Additionally, variable bindings can be shadowed. This means that a later
variable binding with the same name as another binding that is currently in
scope will override the previous binding.

let x: i32 = 8;

{
printlin!("{}", x); // Prints "8"
let x = 12;
println!("{}", x); // Prints "12"

}

println!("{}", x); // Prints "8"
let x = 42;

println!("{}", x); // Prints "42"

Shadowing and mutable bindings may appear as two sides of the same coin,
but they are two distinct concepts that can’t always be used interchangeably.
For one, shadowing enables us to rebind a name to a value of a different
type. It is also possible to change the mutability of a binding. Note that
shadowing a name does not alter or destroy the value it was bound to, and
the value will continue to exist until it goes out of scope, even if it is no
longer accessible by any means.

let mut x: i32 = 1;
x = 17;
let x = x; // x 1s now immutable and is bound to 7

let y = 4;

let y = "I can also be bound to text!"; // y is now of a different type
[

Functions

Every Rust program has at least one function, the main function:

fn main() {

}

This is the simplest possible function declaration. As we mentioned before,
fn says °‘this is a function’, followed by the name, some parentheses
because this function takes no arguments, and then some curly braces to
indicate the body. Here’s a function named foo:

fn foo() {
}

So, what about taking arguments? Here’s a function that prints a number:

fn print number(x: i32) {
println!("x is: {}", x);

}

Here’s a complete program that uses print_number:

fn main() {
print number(5);

}

fn print number(x: i32) {
println!("x is: {}", X);

}

As you can see, function arguments work very similar to let declarations:
you add a type to the argument name, after a colon.

Here’s a complete program that adds two numbers together and prints them:

fn main() {
print sum(5, 6);

}

fn print sum(x: i32, y: i32) {
println!("sum is: {}", x + y);

}

You separate arguments with a comma, both when you call the function, as
well as when you declare it.

Unlike 1et, you must declare the types of function arguments. This does not
work:

fn print sum(x, y) {
println!("sum is: {}", x + y);

}

You get this error:

expected one of “!°, “:7, or “@°, found)"
fn print_sum(x, y) {

This is a deliberate design decision. While full-program inference is
possible, languages which have it, like Haskell, often suggest that

documenting your types explicitly is a best-practice. We agree that forcing
functions to declare types while allowing for inference inside of function
bodies is a wonderful sweet spot between full inference and no inference.

What about returning a value? Here’s a function that adds one to an integer:

fn add one(x: i32) -> i32 {
x +1

}

Rust functions return exactly one value, and you declare the type after an
‘arrow’, which is a dash (-) followed by a greater-than sign (>). The last
line of a function determines what it returns. You’ll note the lack of a
semicolon here. If we added it in:

fn add one(x: i32) -> i32 {
X + 1;

}

We would get an error:

error: not all control paths return a value
fn add one(x: i32) -> i32 {
x + 1;

}

help: consider removing this semicolon:
X + 1;

~

This reveals two interesting things about Rust: it is an expression-based
language, and semicolons are different from semicolons in other ‘curly
brace and semicolon’-based languages. These two things are related.

Expressions vs. Statements

Rust is primarily an expression-based language. There are only two kinds of
statements, and everything else is an expression.

So what’s the difference? Expressions return a value, and statements do not.
That’s why we end up with ‘not all control paths return a value’ here: the
statement x + 1; doesn’t return a value. There are two kinds of statements

in Rust: ‘declaration statements’ and ‘expression statements’. Everything
else is an expression. Let’s talk about declaration statements first.

In some languages, variable bindings can be written as expressions, not
statements. Like Ruby:

In Rust, however, using let to introduce a binding is not an expression. The
following will produce a compile-time error:

let x = (let y = 5); // expected identifier, found keyword ~let"

The compiler is telling us here that it was expecting to see the beginning of
an expression, and a let can only begin a statement, not an expression.

Note that assigning to an already-bound variable (e.g. y = 5) is still an
expression, although its value is not particularly useful. Unlike other
languages where an assignment evaluates to the assigned value (e.g. 5 in the
previous example), in Rust the value of an assignment is an empty tuple ()
because the assigned value can have only one owner, and any other returned
value would be too surprising:

let mut y = 5;

let x = (y = 6); // x has the value ~ (), not “6°

The second kind of statement in Rust is the expression statement. Its
purpose is to turn any expression into a statement. In practical terms, Rust’s
grammar expects statements to follow other statements. This means that
you use semicolons to separate expressions from each other. This means
that Rust looks a lot like most other languages that require you to use
semicolons at the end of every line, and you will see semicolons at the end
of almost every line of Rust code you see.

What is this exception that makes us say “almost”? You saw it already, in
this code:

fn add one(x: i32) -> i32 {
x + 1

Our function claims to return an i32, but with a semicolon, it would return
() instead. Rust realizes this probably isn’t what we want, and suggests
removing the semicolon in the error we saw before.

Early returns

But what about early returns? Rust does have a keyword for that, return:

fn foo(x: i32) -> i32 {
return x;

// we never run this code!
x + 1

Using a return as the last line of a function works, but is considered poor
style:
fn foo(x: i132) -> i32 {

return x + 1;

}

The previous definition without return may look a bit strange if you
haven’t worked in an expression-based language before, but it becomes
intuitive over time.

Diverging functions

Rust has some special syntax for ‘diverging functions’, which are functions
that do not return:

fn diverges() -> ! {
panic!("This function never returns!");

}

panic! 1S a macro, similar to println! () that we’ve already seen. Unlike
println! (), panic! () causes the current thread of execution to crash with
the given message. Because this function will cause a crash, it will never
return, and so it has the type ‘!’, which is read ‘diverges’.

If you add a main function that calls diverges () and run it, you’ll get some
output that looks like this:

thread ‘main’ panicked at

‘This function never returns!’, hello.rs:2

If you want more information, you can get a backtrace by setting the
RUST_BACKTRACE environment variable:

$ RUST_ BACKTRACE=1 ./diverges
thread 'main' panicked at 'This function never returns!', hello.rs:2
stack backtrace:

1: 0x7£402773a829 sys::backtrace::write::h0942de78b6c02817K8r

2: 0x7£402773d7fc panicking::on_panic::h3£23f9d0b5f4c91budw

3: 0x7£402773960e rt::unwind::begin unwind inner::h2844b8c5e81e79558Bw
4: 0x7£4027738893 rt::unwind: :begin unwind::h4375279447423903650
5: 0x7£4027738809 diverges::h2266b4c4b850236beaa

6: 0x7f40277389e5 main::hl19bb1149c2f00ecfBaa

7: 0x7£402773£f514 rt::unwind::try::try fn::h13186883479104382231
8: 0x7£402773d1d8 __rust_try

9: 0x7£402773£201 rt::lang_start::hal72a3ce74bb453aK5w

10: 0x7f4027738al9 main

11: 0x7f402694ab44 _ libc_start _main

12: 0x7£40277386c8 <unknown>

13: 0x0 <unknown>

If you need to override an already set RUST BACKTRACE, in cases when you
cannot just unset the variable, then set it to 0 to avoid getting a backtrace.
Any other value (even no value at all) turns on backtrace.

$ export RUST BACKTRACE=1

$ RUST_BACKTRACE=0 ./diverges

thread 'main' panicked at 'This function never returns!', hello.rs:2
note: Run with “RUST_BACKTRACE=1" for a backtrace.

RUST BACKTRACE also works with Cargo’s run command:

$ RUST_BACKTRACE=1 cargo run

Running ~target/debug/diverges”
thread 'main' panicked at 'This function never returns!', hello.rs:2
stack backtrace:

1: 0x7£402773a829 sys::backtrace::write::h0942de78b6c02817K8r

2: 0x7£402773d7fc panicking::on_panic::h3£23f9d0b5f4c91budw

3: 0x7£402773960e rt::unwind::begin_unwind_inner::h2844b8c5e81e79558Bw
4: 0x7£4027738893 rt::unwind: :begin unwind::h4375279447423903650
5: 0x7£4027738809 diverges::h2266b4c4b850236beaa

6: 0x7£40277389e5 main::h19bb1149c2f00ecfBaa

7: 0x7£402773£f514 rt::unwind::try::try fn::h13186883479104382231
8: 0x7£402773d1d8 __rust_try

9: 0x7£402773£201 rt::lang start::hal72a3ce74bb453aK5w

10: 0x7£4027738al9 main

11: 0x7£402694ab44 _ libc_start_main

12: 0x7£40277386c8 - <unknown>
13: 0x0 - <unknown>

A diverging function can be used as any type:

let x: i32 = diverges();
let x: String = diverges();

Function pointers

We can also create variable bindings which point to functions:

let f: fn(i32) -> i32;

£ is a variable binding which points to a function that takes an i32 as an
argument and returns an i32. For example:

fn plus_one(i: i32) -> i32 {
i+1

}

// without type inference
let f: £fn(i32) -> i32 = plus_one;

// with type inference
let £ = plus_one;

We can then use £ to call the function:
let six = £(5);

Primitive Types

The Rust language has a number of types that are considered ‘primitive’.
This means that they’re built-in to the language. Rust is structured in such a
way that the standard library also provides a number of useful types built on
top of these ones, as well, but these are the most primitive.

Booleans

Rust has a built-in boolean type, named bool. It has two values, true and

false:

let x = true;

let y: bool = false;
A common use of booleans is in if conditionals.

You can find more documentation for bools in_the standard library
documentation.

char

The char type represents a single Unicode scalar value. You can create
chars with a single tick: (")

let x = 'x';
let two_hearts = '¥" ';

Unlike some other languages, this means that Rust’s char is not a single
byte, but four.

You can find more documentation for chars in_the standard library
documentation.

Numeric types

Rust has a variety of numeric types in a few categories: signed and
unsigned, fixed and variable, floating-point and integer.

These types consist of two parts: the category, and the size. For example,
ulé 1s an unsigned type with sixteen bits of size. More bits lets you have
bigger numbers.

If a number literal has nothing to cause its type to be inferred, it defaults:

let x = 42; // x has type 132

let y = 1.0; // y has type f64

Here’s a list of the different numeric types, with links to their
documentation in the standard library:

http://doc.rust-lang.org/std/primitive.bool.html
http://doc.rust-lang.org/std/primitive.char.html

Let’s go over them by category:
Signed and Unsigned

Integer types come in two varieties: signed and unsigned. To understand the
difference, let’s consider a number with four bits of size. A signed, four-bit
number would let you store numbers from -8 to +7. Signed numbers use
“two’s complement representation”. An unsigned four bit number, since it
does not need to store negatives, can store values from 0 to +15.

Unsigned types use a u for their category, and signed types use i. The i is
for ‘integer’. So u8 is an eight-bit unsigned number, and i8 is an eight-bit
signed number.

Fixed-size types

Fixed-size types have a specific number of bits in their representation. Valid
bit sizes are 8, 16, 32, and 64. So, u32 is an unsigned, 32-bit integer, and i64
1s a signed, 64-bit integer.

Variable-size types

http://doc.rust-lang.org/std/primitive.i8.html
http://doc.rust-lang.org/std/primitive.i16.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i64.html
http://doc.rust-lang.org/std/primitive.u8.html
http://doc.rust-lang.org/std/primitive.u16.html
http://doc.rust-lang.org/std/primitive.u32.html
http://doc.rust-lang.org/std/primitive.u64.html
http://doc.rust-lang.org/std/primitive.isize.html
http://doc.rust-lang.org/std/primitive.usize.html
http://doc.rust-lang.org/std/primitive.f32.html
http://doc.rust-lang.org/std/primitive.f64.html

Rust also provides types whose particular size depends on the underlying
machine architecture. Their range is sufficient to express the size of any
collection, so these types have ‘size’ as the category. They come in signed
and unsigned varieties which account for two types: isize and usize.

Floating-point types

Rust also has two floating point types: £32 and £64. These correspond to
IEEE-754 single and double precision numbers.

Arrays

Like many programming languages, Rust has list types to represent a
sequence of things. The most basic is the array, a fixed-size list of elements
of the same type. By default, arrays are immutable.

let a =[1, 2, 31; // a: [1i32; 3]
let mut m =[1, 2, 3]1; // m: [1i32; 3]

Arrays have type [T; N]. We’ll talk about this T notation in the generics
section. The N is a compile-time constant, for the length of the array.

There’s a shorthand for initializing each element of an array to the same
value. In this example, each element of a will be initialized to o:

let a = [0; 201; // a: [i32; 20]

You can get the number of elements in an array a with a.len():

let a =11, 2, 3];

printin!("a has {} elements", a.len());

You can access a particular element of an array with subscript notation:

let names = ["Graydon", "Brian", "Niko"l; // names: [&str; 3]

println!("The second name is: {}", names[1]);

Subscripts start at zero, like in most programming languages, so the first
name is names[0] and the second name is names[1]. The above example
prints The second name is: Brian. If you try to use a subscript that is not
in the array, you will get an error: array access is bounds-checked at run-
time. Such errant access is the source of many bugs in other systems
programming languages.

You can find more documentation for arrays in the standard library
documentation.

Slices

A ‘slice’ i1s a reference to (or “view” into) another data structure. They are
useful for allowing safe, efficient access to a portion of an array without
copying. For example, you might want to reference only one line of a file
read into memory. By nature, a slice is not created directly, but from an
existing variable binding. Slices have a defined length, and can be mutable
or immutable.

Internally, slices are represented as a pointer to the beginning of the data
and a length.

Slicing syntax

You can use a combo of & and [] to create a slice from various things. The &
indicates that slices are similar to [references], which we will cover in detail
later in this section. The [1s, with a range, let you define the length of the
slice:

let a =10, 1, 2, 3, 4];
let complete = &a[..]; // A slice containing all of the elements in a
let middle = &a[l..4]; // A slice of a: only the elements 1, 2, and 3

Slices have type &[T]. We’ll talk about that T when we cover generics.

You can find more documentation for slices in_the standard library
documentation.

http://doc.rust-lang.org/std/primitive.array.html
http://doc.rust-lang.org/std/primitive.slice.html

str

Rust’s str type is the most primitive string type. As an unsized type, it’s not
very useful by itself, but becomes useful when placed behind a reference,
like sstr. We’ll elaborate further when we cover Strings and [references].

You can find more documentation for str in_the standard library
documentation.

Tuples

A tuple is an ordered list of fixed size. Like this:

let x = (1, "hello");

The parentheses and commas form this two-length tuple. Here’s the same
code, but with the type annotated:

let x: (i32, &str) = (1, "hello");

As you can see, the type of a tuple looks like the tuple, but with each
position having a type name rather than the value. Careful readers will also
note that tuples are heterogeneous: we have an i32 and a sstr in this tuple.
In systems programming languages, strings are a bit more complex than in
other languages. For now, read sstr as a string slice, and we’ll learn more
soon.

You can assign one tuple into another, if they have the same contained types
and arity. Tuples have the same arity when they have the same length.

let mut x = (1, 2); // x: (132, 1i32)
let y = (2, 3); // y: (i32, 1i32)

X = y;

You can access the fields in a tuple through a destructuring let. Here’s an
example:

let (x, y, 2) = (1, 2, 3);

http://doc.rust-lang.org/std/primitive.str.html

println!("x is {}", x);

Remember before when I said the left-hand side of a let statement was
more powerful than assigning a binding? Here we are. We can put a pattern
on the left-hand side of the 1et, and if it matches up to the right-hand side,
we can assign multiple bindings at once. In this case, let “destructures” or
“breaks up” the tuple, and assigns the bits to three bindings.

This pattern is very powerful, and we’ll see it repeated more later.

You can disambiguate a single-element tuple from a value in parentheses
with a comma:

(0,); // single-element tuple
(0); // zero in parentheses
Tuple Indexing

You can also access fields of a tuple with indexing syntax:

let tuple = (1, 2, 3);
let x = tuple.O;
let y = tuple.l;
let z = tuple.2;

println!("x is {}", x);

Like array indexing, it starts at zero, but unlike array indexing, it uses a .,
rather than [js.

You can find more documentation for tuples in the standard library
documentation.

Functions

Functions also have a type! They look like this:

fn foo(x: i32) -> i32 { x }

let x: fn(i32) -> i32 = foo;

http://doc.rust-lang.org/std/primitive.tuple.html

In this case, x is a ‘function pointer’ to a function that takes an i32 and
returns an i32.

Comments

Now that we have some functions, it’s a good idea to learn about comments.
Comments are notes that you leave to other programmers to help explain
things about your code. The compiler mostly ignores them.

Rust has two kinds of comments that you should care about: line comments
and doc comments.

// Line comments are anything after ‘ //’ and extend to the end of the line.
let x = 5; // this is also a line comment.

// If you have a long explanation for something, you can put line comments next
// to each other. Put a space between the // and your comment so that it’s
// more readable.

The other kind of comment is a doc comment. Doc comments use ///
instead of //, and support Markdown notation inside:

/// Adds one to the number given.
/77
/// # Examples
/77
/77 70
/// let five = 5;
///
/// assert _eq! (6, add one(5));
/// # fn add_one(x: 132) -> 132 {
/77 # x + 1
/7 #}
/77 70
fn add one(x: i32) -> i32 {
x +1

}

There is another style of doc comment, //!, to comment containing items (
e.g. crates, modules or functions), instead of the items following it.
Commonly used inside crates root (lib.rs) or modules root (mod.rs):

//' # The Rust Standard Library
/7!

//! The Rust Standard Library provides the essential runtime
//! functionality for building portable Rust software.

When writing doc comments, providing some examples of usage is very,
very helpful. You’ll notice we’ve used a new macro here: assert_eq!. This
compares two values, and panic!s if they’re not equal to each other. It’s
very helpful in documentation. There’s another macro, assert!, which
panic!s if the value passed to it is false.

You can use the rustdoc tool to generate HTML documentation from these
doc comments, and also to run the code examples as tests!

if

Rust’s take on if is not particularly complex, but it’s much more like the if
you’ll find in a dynamically typed language than in a more traditional
systems language. So let’s talk about it, to make sure you grasp the nuances.

if is a specific form of a more general concept, the ‘branch’, whose name
comes from a branch in a tree: a decision point, where depending on a
choice, multiple paths can be taken.

In the case of if, there is one choice that leads down two paths:

let x = 5;

if x == 5 {
println!("x is fivel!");

}

If we changed the value of x to something else, this line would not print.
More specifically, if the expression after the if evaluates to true, then the
block is executed. If it’s false, then it is not.

If you want something to happen in the false case, use an else:

let x = 5;

if x == 5 {
println!("x is fivel!");
} else {

printin!("x is not five :(");

If there 1s more than one case, use an else if:

let x = 5;

if x == 5 {
println!("x is fivel!");
} else if x == 6 {
println!("x is six!");
} else {
println!("x is not five or six :(");

}

This is all pretty standard. However, you can also do this:

let x 58

let y
10
} else {
15
Yi: // y: 132

if x == 5 {

Which we can (and probably should) write like this:

let x

5;

let y if x ==5{ 10 } else { 15 }; // y: 132

This works because if is an expression. The value of the expression is the
value of the last expression in whichever branch was chosen. An if without

an else always results in () as the value.

Loops

Rust currently provides three approaches to performing some kind of
iterative activity. They are: loop, while and for. Each approach has its own

set of uses.

loop

The infinite loop is the simplest form of loop available in Rust. Using the
keyword loop, Rust provides a way to loop indefinitely until some
terminating statement is reached. Rust’s infinite 1oops look like this:

loop {
println!("Loop forever!");

}

while

Rust also has a while loop. It looks like this:

let mut x = 5; // mut x: 132
let mut done = false; // mut done: bool

while !done {
X += X - 3;

printin!("{}", X);
if x 5 == 0 {
done = true;

}
}

while loops are the correct choice when you’re not sure how many times
you need to loop.

If you need an infinite loop, you may be tempted to write this:

while true {

However, 1oop is far better suited to handle this case:

loop {

Rust’s control-flow analysis treats this construct differently than a while
true, since we know that it will always loop. In general, the more
information we can give to the compiler, the better it can do with safety and
code generation, so you should always prefer 1oop when you plan to loop
infinitely.

for

The for loop is used to loop a particular number of times. Rust’s for loops
work a bit differently than in other systems languages, however. Rust’s for
loop doesn’t look like this “C-style” for loop:

for (x = 0; x < 10; =xt++) {
printf("%d\n", x);
}

Instead, it looks like this:

for x in 0..10 {
println!("{}", x); // x: 132
}

In slightly more abstract terms,

for var in expression {
code

}

The expression is an item that can be converted into an [iterator] using
[IntoIterator]. The iterator gives back a series of elements. Each element
is one iteration of the loop. That value is then bound to the name var, which
is valid for the loop body. Once the body is over, the next value is fetched
from the iterator, and we loop another time. When there are no more values,
the for loop is over.

In our example, 0..10 is an expression that takes a start and an end
position, and gives an iterator over those values. The upper bound is
exclusive, though, so our loop will print 0 through 9, not 10.

Rust does not have the “C-style” for loop on purpose. Manually controlling
each element of the loop is complicated and error prone, even for
experienced C developers.

Enumerate

When you need to keep track of how many times you already looped, you
can use the .enumerate () function.

On ranges:

for (index, value) in (5..10).enumerate() {

println!("index = {} and value = {}", index, value);

}

Outputs:

index = 0 and value = 5

index = 1 and value = 6

index = 2 and value = 7

index = 3 and value = 8

index = 4 and value = 9

Don’t forget to add the parentheses around the range.

On iterators:

let lines = "hello\nworld".lines();

for (linenumber, line) in lines.enumerate() {
printlin!("{}: {}", linenumber, line);

}
Outputs:
0: hello
1l: world

Ending iteration early

Let’s take a look at that while loop we had earlier:

let mut x = 5;
let mut done = false;

while !done {
X += X - 3;

println!("{}", x);
if x $ 5 == 0 {

done = true;

}

We had to keep a dedicated mut boolean variable binding, done, to know
when we should exit out of the loop. Rust has two keywords to help us with
modifying iteration: break and continue.

In this case, we can write the loop in a better way with break:

let mut x = 5;

loop {
X += x - 3;

printin!("{}", x);

if x $ 5 == 0 { break; }

We now loop forever with 1oop and use break to break out early. Issuing an
explicit return statement will also serve to terminate the loop early.

continue is similar, but instead of ending the loop, it goes to the next
iteration. This will only print the odd numbers:

for x in 0..10 {
if x $ 2 == 0 { continue; }

println!("{}", x);

Loop labels

You may also encounter situations where you have nested loops and need to
specify which one your break or continue statement is for. Like most other
languages, by default a break or continue will apply to innermost loop. In
a situation where you would like to break or continue for one of the outer
loops, you can use labels to specify which loop the break or continue
statement applies to. This will only print when both x and y are odd:

'outer: for x in 0..10 {
'"inner: for y in 0..10 {
if x $ 2 == 0 { continue 'outer; } // continues the loop over x
if y $ 2 == 0 { continue 'inner; } // continues the loop over y
printin!("x: {}, y: {}", X, ¥);

Vectors

A ‘vector’ is a dynamic or ‘growable’ array, implemented as the standard
library type vec<T>. The T means that we can have vectors of any type (see
the chapter on generics for more). Vectors always allocate their data on the
heap. You can create them with the vec! macro:

let v = vec![1, 2, 3, 4, 51; // v: Vec<i32>

(Notice that unlike the println! macro we’ve used in the past, we use
square brackets [] with vec! macro. Rust allows you to use either in either
situation, this is just convention.)

There’s an alternate form of vec! for repeating an initial value:

let v = vec![0; 10]; // ten zeroes

Vectors store their contents as contiguous arrays of T on the heap. This
means that they must be able to know the size of T at compile time (that is,
how many bytes are needed to store a 7). The size of some things can’t be
known at compile time. For these you’ll have to store a pointer to that thing:
thankfully, the Box type works perfectly for this.

Accessing elements

To get the value at a particular index in the vector, we use []s:
let v = vec![1, 2, 3, 4, 5];
println!("The third element of v is {}", v[2]);

The indices count from 0, so the third element 1s v[2].

It’s also important to note that you must index with the usize type:

let v = vec![1, 2, 3, 4, 5];

let i: usize

= 0;
let j: i32 = 0;

http://doc.rust-lang.org/std/vec/index.html
http://doc.rust-lang.org/std/boxed/index.html

// works
vi i] ;

// doesn’t
vi 31

Indexing with a non-usize type gives an error that looks like this:

error: the trait bound “collections::vec::Vec<_> : core::ops::Index<i32>"
is not satisfied [E0277]
viili

note: the type “collections::vec::Vec<_>" cannot be indexed by ~i32"
error: aborting due to previous error

There’s a lot of punctuation in that message, but the core of it makes sense:
you cannot index with an i32.

Out-of-bounds Access

If you try to access an index that doesn’t exist:

let v = vec![1, 2, 3];
println!("Item 7 is {}", v[7]);

then the current thread will [panic] with a message like this:

thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 7'

If you want to handle out-of-bounds errors without panicking, you can use
methods like get or get_mut that return None when given an invalid index:

let v = vec![1, 2, 3]1;
match v.get(7) {
Some(x) => println!("Item 7 is {}", x),
None => println!("Sorry, this vector is too short.")

Iterating

Once you have a vector, you can iterate through its elements with for.
There are three versions:

let mut v = vec![1, 2, 3, 4, 5];

http://doc.rust-lang.org/std/vec/struct.Vec.html#method.get
http://doc.rust-lang.org/std/vec/struct.Vec.html#method.get_mut

for i in &v {
println!("A reference to {}", 1i);

}

for i in &mut v {
println!("A mutable reference to {}", i);

}

for i in v {
println!("Take ownership of the vector and its element {}", 1i);

}

Note: You cannot use the vector again once you have iterated by taking
ownership of the vector. You can iterate the vector multiple times by taking
a reference to the vector whilst iterating. For example, the following code
does not compile.

let v = vec![1, 2, 3, 4, 51;
for i in v {

println!("Take ownership of the vector and its element {}", i);

}

for i in v {
println!("Take ownership of the vector and its element {}", i);

}

Whereas the following works perfectly,

let v = vec!/[1, 2, 3, 4, 5];

for i in &v {
println!("This is a reference to {}", i);

}

for i in &v {
println!("This is a reference to {}", i);

}

Vectors have many more useful methods, which you can read about in their
API documentation.

Ownership

This is the first of three sections presenting Rust’s ownership system. This
is one of Rust’s most distinct and compelling features, with which Rust

http://doc.rust-lang.org/std/vec/index.html

developers should become quite acquainted. Ownership is how Rust
achieves its largest goal, memory safety. There are a few distinct concepts,
each with its own chapter:

e ownership, which you’re reading now
e borrowing, and their associated feature ‘references’
e lifetimes, an advanced concept of borrowing

These three chapters are related, and in order. You’ll need all three to fully
understand the ownership system.

Meta

Before we get to the details, two important notes about the ownership
system.

Rust has a focus on safety and speed. It accomplishes these goals through
many ‘zero-cost abstractions’, which means that in Rust, abstractions cost
as little as possible in order to make them work. The ownership system is a
prime example of a zero-cost abstraction. All of the analysis we’ll talk
about in this guide is done at compile time. You do not pay any run-time
cost for any of these features.

However, this system does have a certain cost: learning curve. Many new
users to Rust experience something we like to call ‘fighting with the borrow
checker’, where the Rust compiler refuses to compile a program that the
author thinks 1s valid. This often happens because the programmer’s mental
model of how ownership should work doesn’t match the actual rules that
Rust implements. You probably will experience similar things at first. There
i1s good news, however: more experienced Rust developers report that once
they work with the rules of the ownership system for a period of time, they
fight the borrow checker less and less.

With that in mind, let’s learn about ownership.

Ownership

Variable bindings have a property in Rust: they ‘have ownership’ of what
they’re bound to. This means that when a binding goes out of scope, Rust
will free the bound resources. For example:

fn foo() {
let v = vec!/[1, 2, 3]1;
}

When v comes into scope, a new vector is created on the stack, and it
allocates space on the heap for its elements. When v goes out of scope at the
end of foo(), Rust will clean up everything related to the vector, even the
heap-allocated memory. This happens deterministically, at the end of the
scope.

We’ll cover yectors in detail later in this chapter; we only use them here as
an example of a type that allocates space on the heap at runtime. They
behave like arrays, except their size may change by push()ing more
elements onto them.

Vectors have a generic type vec<T>, so in this example v will have type
vec<i32>. We’ll cover generics in detail later in this chapter.

Move semantics

There’s some more subtlety here, though: Rust ensures that there is exactly
one binding to any given resource. For example, if we have a vector, we can
assign it to another binding:

let v = vec![1, 2, 3];
let v2 = v;
But, if we try to use v afterwards, we get an error:

let v = vec![1, 2, 3];
let v2 = v;

println!("v[0] is: {}", V[0]);

It looks like this:

error: use of moved value: “v~
println! ("v[0] is: {}", v[0]);

A similar thing happens if we define a function which takes ownership, and
try to use something after we’ve passed it as an argument:

fn take(v: Vec<i32>) {
// what happens here isn’t important.

}

let v = vec![1, 2, 3];

take(v);

println!("v[0] is: {}", v[0]);

Same error: ‘use of moved value’. When we transfer ownership to
something else, we say that we’ve ‘moved’ the thing we refer to. You don’t

need some sort of special annotation here, it’s the default thing that Rust
does.

The details

The reason that we cannot use a binding after we’ve moved it is subtle, but
important.

When we write code like this:

let x = 10;

Rust allocates memory for an integer [132] on the stack, copies the bit
pattern representing the value of 10 to the allocated memory and binds the
variable name x to this memory region for future reference.

Now consider the following code fragment:
let v = vec![1, 2, 3];

let mut v2 = v;

The first line allocates memory for the vector object v on the stack like it
does for x above. But in addition to that it also allocates some memory on

the heap for the actual data (1, 2, 31). Rust copies the address of this
heap allocation to an internal pointer, which is part of the vector object
placed on the stack (let’s call it the data pointer).

It is worth pointing out (even at the risk of stating the obvious) that the
vector object and its data live in separate memory regions instead of being a
single contiguous memory allocation (due to reasons we will not go into at
this point of time). These two parts of the vector (the one on the stack and
one on the heap) must agree with each other at all times with regards to
things like the length, capacity, etc.

When we move v to v2, Rust actually does a bitwise copy of the vector
object v into the stack allocation represented by v2. This shallow copy does
not create a copy of the heap allocation containing the actual data. Which
means that there would be two pointers to the contents of the vector both
pointing to the same memory allocation on the heap. It would violate Rust’s
safety guarantees by introducing a data race if one could access both v and
v2 at the same time.

For example if we truncated the vector to just two elements through v2:

v2.truncate(2);

and v were still accessible we’d end up with an invalid vector since v would
not know that the heap data has been truncated. Now, the part of the vector
v on the stack does not agree with the corresponding part on the heap. v still
thinks there are three elements in the vector and will happily let us access
the non existent element v[2] but as you might already know this is a recipe
for disaster. Especially because it might lead to a segmentation fault or
worse allow an unauthorized user to read from memory to which they don’t
have access.

This is why Rust forbids using v after we’ve done the move.

It’s also important to note that optimizations may remove the actual copy of
the bytes on the stack, depending on circumstances. So it may not be as
inefficient as it initially seems.

Copy types

We’ve established that when ownership is transferred to another binding,
you cannot use the original binding. However, there’s a trait that changes
this behavior, and it’s called copy. We haven’t discussed traits yet, but for
now, you can think of them as an annotation to a particular type that adds
extra behavior. For example:

let v = 1;
let v2 = v;

println!("v is: {}", v);

In this case, v is an i32, which implements the copy trait. This means that,
just like a move, when we assign v to v2, a copy of the data is made. But,
unlike a move, we can still use v afterward. This i1s because an i32 has no
pointers to data somewhere else, copying it is a full copy.

All primitive types implement the copy trait and their ownership is
therefore not moved like one would assume, following the ‘ownership
rules’. To give an example, the two following snippets of code only compile
because the 132 and bool types implement the copy trait.

fn main() {
let a = 5;

let _y = double(a);
println!("{}", a);
}

fn double(x: i32) -> i32 {
X * 2

}

fn main() {
let a = true;
let y = change truth(a);
println!("{}", a);

}

fn change_ truth(x: bool) -> bool {
I'x

}

If we had used types that do not implement the copy trait, we would have
gotten a compile error because we tried to use a moved value.

error: use of moved value: ~a
println! ("{}", a);

We will discuss how to make your own types Copy in the traits section.

More than ownership

Of course, if we had to hand ownership back with every function we wrote:

fn foo(v: Vec<i32>) -> Vec<i32> {
// do stuff with v

// hand back ownership
v

This would get very tedious. It gets worse the more things we want to take
ownership of:

fn foo(vl: Vec<i32>, v2: Vec<i32>) -> (Vec<i32>, Vec<i32>, 1i32) {
// do stuff with vl and v2

// hand back ownership, and the result of our function
(vl, v2, 42)
}

let vl
let v2

vec![1l, 2, 3];
vec![1l, 2, 3];

let (v1, v2, answer) = foo(vl, v2);

Ugh! The return type, return line, and calling the function gets way more
complicated.

Luckily, Rust offers a feature which helps us solve this problem. It’s called
borrowing and is the topic of the next section!

References and Borrowing

This is the second of three sections presenting Rust’s ownership system.
This is one of Rust’s most distinct and compelling features, with which Rust
developers should become quite acquainted. Ownership is how Rust
achieves its largest goal, memory safety. There are a few distinct concepts,
each with its own chapter:

e ownership, the key concept
e borrowing, which you’re reading now
e lifetimes, an advanced concept of borrowing

These three chapters are related, and in order. You’ll need all three to fully
understand the ownership system.

Meta

Before we get to the details, two important notes about the ownership
system.

Rust has a focus on safety and speed. It accomplishes these goals through
many ‘zero-cost abstractions’, which means that in Rust, abstractions cost
as little as possible in order to make them work. The ownership system is a
prime example of a zero-cost abstraction. All of the analysis we’ll talk
about in this guide is done at compile time. You do not pay any run-time
cost for any of these features.

However, this system does have a certain cost: learning curve. Many new
users to Rust experience something we like to call ‘fighting with the borrow
checker’, where the Rust compiler refuses to compile a program that the
author thinks 1s valid. This often happens because the programmer’s mental
model of how ownership should work doesn’t match the actual rules that
Rust implements. You probably will experience similar things at first. There
i1s good news, however: more experienced Rust developers report that once
they work with the rules of the ownership system for a period of time, they
fight the borrow checker less and less.

With that in mind, let’s learn about borrowing.

Borrowing

At the end of the ownership section, we had a nasty function that looked
like this:

fn foo(vl: Vec<i32>, v2: Vec<i32>) -> (Vec<i32>, Vec<i32>, i32) {
// do stuff with vl and v2

// hand back ownership, and the result of our function
(vl, v2, 42)
}

let vl = vec![1, 2, 3];
let v2 vec![1l, 2, 3];

let (vl1l, v2, answer) = foo(vl, v2);

This is not idiomatic Rust, however, as it doesn’t take advantage of
borrowing. Here’s the first step:

fn foo(vl: &Vec<i32>, v2: &Vec<i32>) -> i32 {
// do stuff with vl and v2

// return the answer

42
}
let vl = vec!/[1, 2, 3];
let v2 = vec![1, 2, 3];

let answer = foo(&vl, &v2);

// we can use vl and v2 here!

A more concrete example:

fn main() {
// Don't worry if you don't understand how “fold" works, the point here is that &
L immutable reference is borrowed.
fn sum vec(v: &Vec<i32>) -> i32 {
return v.iter().fold(0, |a, &b| a + b);
}
// Borrow two vectors and sum them.
// This kind of borrowing does not allow mutation to the borrowed.
fn foo(vl: &Vec<i32>, v2: &Vec<i32>) -> i32 {
// do stuff with vl and v2
let sl = sum vec(vl);
let s2 = sum vec(v2);
// return the answer
sl + s2

s

let v1
let v2

vec![1l, 2, 3];
vec![4, 5, 6];

let answer = foo(&vl, &v2);
printin!("{}", answer);

Instead of taking vec<i32>s as our arguments, we take a reference:
&Vec<i32>. And instead of passing v1 and v2 directly, we pass &v1 and &v2.
We call the sT type a ‘reference’, and rather than owning the resource, it
borrows ownership. A binding that borrows something does not deallocate
the resource when it goes out of scope. This means that after the call to
foo(), we can use our original bindings again.

References are immutable, like bindings. This means that inside of foo(),
the vectors can’t be changed at all:

fn foo(v: &Vec<i32>) {
v.push(5);
}

let v = vec![];

foo(&v);

will give us this error:

error: cannot borrow immutable borrowed content ~*v~ as mutable
v.push(5);

Pushing a value mutates the vector, and so we aren’t allowed to do it.
& mut references

There’s a second kind of reference: smut T. A ‘mutable reference’ allows
you to mutate the resource you’re borrowing. For example:

let mut x

{

5;

let y
*y +=

&mut x;

=
~e

}
println!("{}", x);

This will print 6. We make y a mutable reference to x, then add one to the
thing y points at. You’ll notice that x had to be marked mut as well. If it
wasn’t, we couldn’t take a mutable borrow to an immutable value.

You’ll also notice we added an asterisk (*) in front of y, making it *y, this is
because y is a smut reference. You’ll need to use astrisks to access the
contents of a reference as well.

Otherwise, smut references are like references. There is a large difference
between the two, and how they interact, though. You can tell something is
fishy in the above example, because we need that extra scope, with the {
and }. If we remove them, we get an error:

error: cannot borrow X as immutable because it is also borrowed as mutable
println! ("{}", x);

note: previous borrow of “x~ occurs here; the mutable borrow prevents

subsequent moves, borrows, or modification of “x~ until the borrow ends
let y = &mut x;

note: previous borrow ends here
fn main() {

}

A

As it turns out, there are rules.

The Rules

Here are the rules for borrowing in Rust:

First, any borrow must last for a scope no greater than that of the owner.
Second, you may have one or the other of these two kinds of borrows, but
not both at the same time:

¢ one or more references (&T) to a resource,
e exactly one mutable reference (smut T).

You may notice that this is very similar to, though not exactly the same as,
the definition of a data race:

There is a ‘data race’ when two or more pointers access the same
memory location at the same time, where at least one of them is
writing, and the operations are not synchronized.

With references, you may have as many as you’d like, since none of them
are writing. However, as we can only have one smut at a time, it is
impossible to have a data race. This is how Rust prevents data races at
compile time: we’ll get errors if we break the rules.

With this in mind, let’s consider our example again.
Thinking in scopes

Here’s the code:

fn main() {
let mut x = 5;
let y = &amut x;
*y += 1;

println!("{}", x);

This code gives us this error:

error: cannot borrow “x~ as immutable because it is also borrowed as mutable
println! ("{}", x);

This is because we’ve violated the rules: we have a smut T pointing to x,
and so we aren’t allowed to create any &Ts. It’s one or the other. The note
hints at how to think about this problem:

note: previous borrow ends here
fn main() {

}

In other words, the mutable borrow is held through the rest of our example.
What we want is for the mutable borrow by y to end so that the resource can
be returned to the owner, x. x can then provide a immutable borrow to
println!. In Rust, borrowing is tied to the scope that the borrow is valid
for. And our scopes look like this:

fn main() {
let mut x = 5;

let y = &smut x; // -+ &mut borrow of x starts here
/7
*y += 1; /7
/7
println!("{}", x); // -+ - try to borrow x here
} // -+ &mut borrow of x ends here

The scopes conflict: we can’t make an &x while y is in scope.

So when we add the curly braces:

let mut x Sg

let y = &mut x; // -+ &mut borrow starts here
*y += 1; /7
} // -+ ... and ends here
println!("{}", x); // <- try to borrow x here

There’s no problem. Our mutable borrow goes out of scope before we
create an immutable one. So scope is the key to seeing how long a borrow
lasts for.

Issues borrowing prevents

Why have these restrictive rules? Well, as we noted, these rules prevent data
races. What kinds of issues do data races cause? Here are a few.

Iterator invalidation

One example is ‘iterator invalidation’, which happens when you try to
mutate a collection that you’re iterating over. Rust’s borrow checker
prevents this from happening:

let mut v = vec!/[1, 2, 3];

for i in &v {
println!("{}", i);
}

This prints out one through three. As we iterate through the vector, we’re
only given references to the elements. And v is itself borrowed as
immutable, which means we can’t change it while we’re iterating:

let mut v = vec![1, 2, 3];

for i in &v {
println!("{}", 1);
v.push(34);

Here’s the error:

error: cannot borrow v~ as mutable because it is also borrowed as immutable
v.push(34);

note: previous borrow of v~ occurs here; the immutable borrow prevents
subsequent moves or mutable borrows of “v~ until the borrow ends
for i in &v {
A
note: previous borrow ends here
for i in &v {

println! (“{}", 1i);
v.push(34);

We can’t modify v because it’s borrowed by the loop.
Use after free

References must not live longer than the resource they refer to. Rust will
check the scopes of your references to ensure that this is true.

If Rust didn’t check this property, we could accidentally use a reference
which was invalid. For example:

let y: &i32;

let x = 5;
y = &%;

}

println!("{}", ¥);

We get this error:

error: ~x does not live long enough
y = &%;

note: reference must be valid for the block suffix following statement 0 at
2:16...
let y: &i32;
{
let x = 5;
y = &X;
}

note: ...but borrowed value is only valid for the block suffix following
statement 0 at 4:18

let x = 5;

y = &Xj

In other words, y is only valid for the scope where x exists. As soon as x
goes away, it becomes invalid to refer to it. As such, the error says that the
borrow ‘doesn’t live long enough’ because it’s not valid for the right
amount of time.

The same problem occurs when the reference is declared before the variable
it refers to. This 1s because resources within the same scope are freed in the
opposite order they were declared:

let y: &i32;

let x = 5;
y = &X;

println!("{}", ¥);

We get this error:

error: ~x does not live long enough
y = &xj

note: reference must be valid for the block suffix following statement 0 at
2:16...

let y: &i32;

let x = 5;

y = &x;

printlnl! ("{}", y);
}

note: ...but borrowed value is only valid for the block suffix following
statement 1 at 3:14

let x = 5;

y = &Xj

printlnl! ("{}", y);
}

In the above example, y is declared before x, meaning that y lives longer
than x, which is not allowed.

Lifetimes

This is the last of three sections presenting Rust’s ownership system. This is
one of Rust’s most distinct and compelling features, with which Rust
developers should become quite acquainted. Ownership is how Rust
achieves its largest goal, memory safety. There are a few distinct concepts,
each with its own chapter:

e ownership, the key concept
e borrowing, and their associated feature ‘references’
e lifetimes, which you’re reading now

These three chapters are related, and in order. You’ll need all three to fully
understand the ownership system.

Meta

Before we get to the details, two important notes about the ownership
system.

Rust has a focus on safety and speed. It accomplishes these goals through
many ‘zero-cost abstractions’, which means that in Rust, abstractions cost
as little as possible in order to make them work. The ownership system is a
prime example of a zero-cost abstraction. All of the analysis we’ll talk

about in this guide is done at compile time. You do not pay any run-time
cost for any of these features.

However, this system does have a certain cost: learning curve. Many new
users to Rust experience something we like to call ‘fighting with the borrow
checker’, where the Rust compiler refuses to compile a program that the
author thinks is valid. This often happens because the programmer’s mental
model of how ownership should work doesn’t match the actual rules that
Rust implements. You probably will experience similar things at first. There
i1s good news, however: more experienced Rust developers report that once
they work with the rules of the ownership system for a period of time, they
fight the borrow checker less and less.

With that in mind, let’s learn about lifetimes.

Lifetimes

Lending out a reference to a resource that someone else owns can be
complicated. For example, imagine this set of operations:

1. I acquire a handle to some kind of resource.

2.1lend you a reference to the resource.

3.1 decide I’'m done with the resource, and deallocate it, while you still
have your reference.

4. You decide to use the resource.

Uh oh! Your reference is pointing to an invalid resource. This is called a
dangling pointer or ‘use after free’, when the resource is memory.

To fix this, we have to make sure that step four never happens after step
three. The ownership system in Rust does this through a concept called
lifetimes, which describe the scope that a reference is valid for.

When we have a function that takes an argument by reference, we can be
implicit or explicit about the lifetime of the reference:

// implicit
fn foo(x: &i32) {
}

// explicit
fn bar<'a>(x: &'a i32) {

}

The 'a reads ‘the lifetime a’. Technically, every reference has some lifetime
associated with it, but the compiler lets you elide (i.e. omit, see “‘Lifetime
Elision” below) them in common cases. Before we get to that, though, let’s
break the explicit example down:

fn bar<'a>(...)

We previously talked a little about function syntax, but we didn’t discuss
the <>s after a function’s name. A function can have ‘generic parameters’
between the <>s, of which lifetimes are one kind. We’ll discuss other kinds
of generics later in the book, but for now, let’s focus on the lifetimes aspect.

We use <> to declare our lifetimes. This says that bar has one lifetime, 'a.
If we had two reference parameters, it would look like this:

fn bar<'a, 'b>(...)

Then in our parameter list, we use the lifetimes we’ve named:
..(x: &'a i32)

If we wanted a smut reference, we’d do this:
..(x: &'a mut 132)

If you compare smut i32 to &'a mut i32, they’re the same, it’s that the
lifetime 'a has snuck in between the & and the mut i32. We read smut i32
as ‘a mutable reference to an i32” and &'a mut i32 as ‘a mutable reference
to an i32 with the lifetime 'a’.

In structs

You’ll also need explicit lifetimes when working with structs that contain
references:

struct Foo<'a> {
x: &'a i32,

}

fn main() {
let y
let £

&5; // this is the same as “let y = 5; let y = & y;
Foo { x: vy };

println!("{}", f£.x);

As you can see, structs can also have lifetimes. In a similar way to
functions,

struct Foo<'a> {

declares a lifetime, and

x: &'a 132,

uses it. So why do we need a lifetime here? We need to ensure that any
reference to a Foo cannot outlive the reference to an i32 it contains.

impl blocks

Let’s implement a method on Foo:

struct Foo<'a> {
Xx: &'a 132,

}

impl<'a> Foo<'a> {
fn x(&self) -> &'a 132 { self.x }
}

fn main() {
let y = &5; // this is the same as “let _y = 5; let 'y = & y;"
let £ = Foo { x: y };

println!("x is: {}", £.x());

As you can see, we need to declare a lifetime for Foo in the impl line. We
repeat 'a twice, like on functions: impl<'a> defines a lifetime 'a, and
Foo<'a> uses it.

Multiple lifetimes

If you have multiple references, you can use the same lifetime multiple
times:

fn x or y<'a>(x: &'a str, y: &'a str) -> &'a str {

This says that x and y both are alive for the same scope, and that the return
value is also alive for that scope. If you wanted x and y to have different
lifetimes, you can use multiple lifetime parameters:

fn x or y<'a, 'b>(x: &'a str, y: &'b str) -> &'a str {

In this example, x and y have different valid scopes, but the return value has
the same lifetime as x.

Thinking in scopes

A way to think about lifetimes is to visualize the scope that a reference is
valid for. For example:

fn main() {

let y = &5; // -+ y goes into scope
/7
// stuff /7
/7
} // -+ y goes out of scope

Adding in our Foo:

struct Foo<'a> {
x: &'a i32,

}

let y &5; // -+ y goes into scope
let £ Foo { x: y }; // -+ f goes into scope
// stuff /7

fn main() {

/7
} // -+ f and y go out of scope

Our £ lives within the scope of y, so everything works. What if it didn’t?
This code won’t work:

struct Foo<'a> {
x: &'a 132,

}

fn main() {

let x; // -+ x goes into scope
/7
{ /7
let y = &5; // —---+ y goes into scope
let £ = Foo { x: y }; // ---+ f goes into scope
x = &f.x; // | | error here
} // --—+ f and y go out of scope
/7
println!("{}", x); /7
} // -+ x goes out of scope

Whew! As you can see here, the scopes of £ and y are smaller than the
scope of x. But when we do x = &£f.x, we make x a reference to something
that’s about to go out of scope.

Named lifetimes are a way of giving these scopes a name. Giving
something a name is the first step towards being able to talk about it.

>static

The lifetime named °‘static’ is a special lifetime. It signals that something
has the lifetime of the entire program. Most Rust programmers first come
across 'static when dealing with strings:

let x: &'static str = "Hello, world.";

String literals have the type &'static str because the reference is always
alive: they are baked into the data segment of the final binary. Another
example are globals:

static FOO: i32 = 5;
let x: &'static i32 = &FO0O;

This adds an 132 to the data segment of the binary, and x is a reference to it.
Lifetime Elision

Rust supports powerful local type inference in the bodies of functions but
not in their item signatures. It’s forbidden to allow reasoning about types
based on the item signature alone. However, for ergonomic reasons, a very
restricted secondary inference algorithm called “lifetime elision” does apply
when judging lifetimes. Lifetime elision is concerned solely to infer lifetime
parameters using three easily memorizable and unambiguous rules. This
means lifetime elision acts as a shorthand for writing an item signature,
while not hiding away the actual types involved as full local inference
would if applied to it.

When talking about lifetime elision, we use the terms input lifetime and
output lifetime. An input lifetime is a lifetime associated with a parameter of
a function, and an output lifetime is a lifetime associated with the return
value of a function. For example, this function has an input lifetime:

fn foo<'a>(bar: &'a str)
This one has an output lifetime:

fn foo<'a>() -> &'a str

This one has a lifetime in both positions:
fn foo<'a>(bar: &'a str) -> &'a str

Here are the three rules:

e Each elided lifetime in a function’s arguments becomes a distinct
lifetime parameter.

e [f there is exactly one input lifetime, elided or not, that lifetime is
assigned to all elided lifetimes in the return values of that function.

e [f there are multiple input lifetimes, but one of them is sself or smut
self, the lifetime of self is assigned to all elided output lifetimes.

Otherwise, it is an error to elide an output lifetime.
Examples

Here are some examples of functions with elided lifetimes. We’ve paired
each example of an elided lifetime with its expanded form.

fn print(s: &str); // elided
fn print<'a>(s: &'a str); // expanded

fn debug(lvl: u32, s: &str); // elided
fn debug<'a>(1lvl: u32, s: &'a str); // expanded

In the preceding example, 1v1l doesn’t need a lifetime because it’s not a
reference (&). Only things relating to references (such as a struct which
contains a reference) need lifetimes.

fn substr(s: &str, until: u32) -> &str; // elided
fn substr<'a>(s: &'a str, until: u32) -> &'a str; // expanded

fn get_str() -> &str; // ILLEGAL, no inputs
fn frob(s: &str, t: &str) -> &str; // ILLEGAL, two inputs

fn frob<'a, 'b>(s: &'a str, t: &'b str) -> &str; // Expanded: Output lifetime is ambi
L uous

fn get mut(&mut self) -> &mut T; // elided
fn get mut<'a>(&'a mut self) -> &'a mut T; // expanded

fn args<T: ToCStr>(&mut self, args: & T]) -> &mut Command; // elided
fn args<'a, 'b, T: ToCStr>(&'a mut self, args: &'b [T]) -> &'a mut Command; // expanc

L d

fn new(buf: &mut [u8]) -> BufWriter; // elided
fn new<'a>(buf: &'a mut [u8]) -> BufWriter<'a>; // expanded

Mutability

Mutability, the ability to change something, works a bit differently in Rust
than in other languages. The first aspect of mutability is its non-default

status:

let x = 5;
X = 6; // error!

We can introduce mutability with the mut keyword:

let mut x = 5;

X = 6; // no problem!

This is a mutable variable binding. When a binding is mutable, it means
you’re allowed to change what the binding points to. So in the above
example, it’s not so much that the value at x is changing, but that the
binding changed from one i32 to another.

You can also create a reference to it, using &x, but if you want to use the
reference to change it, you will need a mutable reference:

let mut x = 5;
let y = &amut x;

y 1S an immutable binding to a mutable reference, which means that you
can’t bind ‘y’ to something else (y = smut z), but y can be used to bind x
to something else (*y = 5). A subtle distinction.

Of course, if you need both:

let mut x
let mut y

5;
&mut x;

Now y can be bound to another value, and the value it’s referencing can be
changed.

It’s important to note that mut is part of a pattern, so you can do things like
this:

let (mut x, y) = (5, 6);

fn foo(mut x: i32) {

Note that here, the x is mutable, but not the y.

Interior vs. Exterior Mutability

However, when we say something is ‘immutable’ in Rust, that doesn’t mean
that it’s not able to be changed: we are referring to its ‘exterior mutability’
that in this case is immutable. Consider, for example, Arc<T>:

use std::sync::Arc;

let x
let y

Arc::new(5);
x.clone();

When we call clone(), the arc<T> needs to update the reference count. Yet
we’ve not used any muts here, x is an immutable binding, and we didn’t
take smut 5 or anything. So what gives?

To understand this, we have to go back to the core of Rust’s guiding
philosophy, memory safety, and the mechanism by which Rust guarantees
it, the ownership system, and more specifically, borrowing:

You may have one or the other of these two kinds of borrows, but not
both at the same time:

e one or more references (&T) to a resource,
e exactly one mutable reference (smut T).

So, that’s the real definition of ‘immutability’: is this safe to have two
pointers to? In arc<T>’s case, yes: the mutation is entirely contained inside
the structure itself. It’s not user facing. For this reason, it hands out sT with
clone(). If it handed out smut Ts, though, that would be a problem.

Other types, like the ones in the std::cell module, have the opposite:
interior mutability. For example:

use std::cell::RefCell;

let x

RefCell::new(42);

let y = x.borrow mut();

http://doc.rust-lang.org/std/sync/struct.Arc.html
http://doc.rust-lang.org/std/cell/index.html

RefCell hands out smut references to what’s inside of it with the
borrow mut () method. Isn’t that dangerous? What if we do:

use std::cell::RefCell;

let x = RefCell::new(42);
let y = x.borrow mut();
let z = x.borrow mut();

This will in fact panic, at runtime. This is what refcell does: it enforces
Rust’s borrowing rules at runtime, and panic!s if they’re violated. This
allows us to get around another aspect of Rust’s mutability rules. Let’s talk
about it first.

Field-level mutability

Mutability is a property of either a borrow (smut) or a binding (let mut).
This means that, for example, you cannot have a struct with some fields
mutable and some immutable:

struct Point {
x: 132,
mut y: i32, // nope

The mutability of a struct is in its binding:

struct Point {
x: 132,
y: i32,
let mut a = Point { x: 5, y: 6 };

a.x = 10;

let b = Point { x: 5, y: 6};

o
]
|

= 10; // error: cannot assign to immutable field “b.x"

However, by using celi<T>, you can emulate field-level mutability:

use std::cell::Cell;

http://doc.rust-lang.org/std/cell/struct.Cell.html

struct Point {

x: 132,

y: Cell<i32>,
}

let point = Point { x: 5, y: Cell::new(6) };
point.y.set(7);

println!("y: {:?}", point.y);

This will printy: cell { value: 7 }.We’ve successfully updated y.

Structs

structs are a way of creating more complex data types. For example, if we
were doing calculations involving coordinates in 2D space, we would need
both an x and a y value:

let origin x
let origin_ y

0;
0;

A struct lets us combine these two into a single, unified datatype with x
and y as field labels:

struct Point {
x: 132,
y: 132,

}

fn main() {
let origin = Point { x: 0, y: 0 }; // origin: Point

println!("The origin is at ({}, {})", origin.x, origin.y);

There’s a lot going on here, so let’s break it down. We declare a struct
with the struct keyword, and then with a name. By convention, structs
begin with a capital letter and are camel cased: PointInSpace, not
Point In Space.

We can create an instance of our struct via let, as usual, but we use a
key: value style syntax to set each field. The order doesn’t need to be the
same as in the original declaration.

Finally, because fields have names, we can access them through dot
notation: origin.x.

The values in structs are immutable by default, like other bindings in
Rust. Use mut to make them mutable:

struct Point {
x: 132,
y: i32,

}

fn main() {
let mut point = Point { x: 0, y: 0 };

point.x = 5;

println!("The point is at ({}, {})", point.x, point.y);

This will print The point is at (5, 0).

Rust does not support field mutability at the language level, so you cannot
write something like this:

struct Point {
mut x: i32,
y: i32,

Mutability is a property of the binding, not of the structure itself. If you’re
used to field-level mutability, this may seem strange at first, but it
significantly simplifies things. It even lets you make things mutable on a
temporary basis:

struct Point {
x: 132,
y: i32,

}

fn main() {
let mut point = Point { x: 0, y: 0 };

point.x = 5;

let point = point; // now immutable

point.y = 6; // this causes an error

Your structure can still contain smut pointers, which will let you do some
kinds of mutation:

struct Point {
x: 132,
y: i32,

}

struct PointRef<'a> {
X: &'a mut i32,
y: &'a mut i32,

}

fn main() {
let mut point = Point { x: 0, y: 0 };

{
let r = PointRef { x: &mut point.x, y: &mut point.y };
*r.x = 5;
*r.y = 6;

}

assert _eq!(5, point.x);
assert _eq!(6, point.y);

Update syntax

A struct can include .. to indicate that you want to use a copy of some
other struct for some of the values. For example:

struct Point3d {
x: 132,
y: i32,
z: 132,

}

let mut point = Point3d { x: 0, y: 0, z: 0 };
point = Point3d { y: 1, .. point };

This gives point a new y, but keeps the old x and z values. It doesn’t have
to be the same struct either, you can use this syntax when making new
ones, and it will copy the values you don’t specify:

let origin = Point3d { x: 0, y: 0, z: 0 };
let point = Point3d { z: 1, x: 2, .. origin };

Tuple structs

Rust has another data type that’s like a hybrid between a tuple and a
struct, called a ‘tuple struct’. Tuple structs have a name, but their fields
don’t. They are declared with the struct keyword, and then with a name
followed by a tuple:

struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);

Here, black and origin are not the same type, even though they contain the
same values.

The members of a tuple struct may be accessed by dot notation or
destructuring let, just like regular tuples:

let black r = black.0;
let Point(_, origin y, origin_z) = origin;

Patterns like Point(, origin y, origin z) are also used in match
expressions.

One case when a tuple struct is very useful is when it has only one element.
We call this the ‘newtype’ pattern, because it allows you to create a new
type that is distinct from its contained value and also expresses its own
semantic meaning:

struct Inches(i32);
let length = Inches(10);

let Inches(integer_ length) = length;
println!("length is {} inches", integer_ length);

As above, you can extract the inner integer type through a destructuring
let. In this case, the let Inches(integer length) assigns 10 to

integer length. We could have used dot notation to do the same thing:

let integer_length = length.0;

It’s always possible to use a struct instead of a tuple struct, and can be
clearer. We could write color and point like this instead:

struct Color {
red: i32,
blue: i32,
green: i32,

}

struct Point {
x: 132,
y: 132,
z: 132,

Good names are important, and while values in a tuple struct can be
referenced with dot notation as well, a struct gives us actual names, rather
than positions.

Unit-like structs

You can define a struct with no members at all:

struct Electron {} // use empty braces...
struct Proton; // ...or just a semicolon

// whether you declared the struct with braces or not, do the same when creating one
let x = Electron {};
let y = Proton;

Such a struct is called ‘unit-like’ because it resembles the empty tuple, (),
sometimes called ‘unit’. Like a tuple struct, it defines a new type.

This is rarely useful on its own (although sometimes it can serve as a
marker type), but in combination with other features, it can become useful.
For instance, a library may ask you to create a structure that implements a
certain trait to handle events. If you don’t have any data you need to store in
the structure, you can create a unit-like struct.

Enums

An enum in Rust is a type that represents data that is one of several possible
variants. Each variant in the enum can optionally have data associated with
it:
enum Message {

Quit,

ChangeColor(i32, i32, i32),

Move { x: 132, y: 1i32 },

Write(String),
}

The syntax for defining variants resembles the syntaxes used to define
structs: you can have variants with no data (like unit-like structs), variants
with named data, and variants with unnamed data (like tuple structs).
Unlike separate struct definitions, however, an enum is a single type. A
value of the enum can match any of the variants. For this reason, an enum is
sometimes called a ‘sum type’: the set of possible values of the enum is the
sum of the sets of possible values for each variant.

We use the :: syntax to use the name of each variant: they’re scoped by the
name of the enum itself. This allows both of these to work:

let x: Message = Message::Move { x: 3, y: 4 };

enum BoardGameTurn {
Move { squares: i32 },
Pass,

}

let y: BoardGameTurn = BoardGameTurn::Move { squares: 1 };

Both variants are named Move, but since they’re scoped to the name of the
enum, they can both be used without conflict.

A value of an enum type contains information about which variant it is, in
addition to any data associated with that variant. This is sometimes referred
to as a ‘tagged union’, since the data includes a ‘tag’ indicating what type it
is. The compiler uses this information to enforce that you’re accessing the

data in the enum safely. For instance, you can’t simply try to destructure a
value as if it were one of the possible variants:

fn process_color_change(msg: Message) {
let Message::ChangeColor(r, g, b) = msg; // compile-time error

}

Not supporting these operations may seem rather limiting, but it’s a
limitation which we can overcome. There are two ways: by implementing
equality ourselves, or by pattern matching variants with match expressions,
which you’ll learn in the next section. We don’t know enough about Rust to
implement equality yet, but we’ll find out in the traits section.

Constructors as functions

An enum constructor can also be used like a function. For example:

let m = Message::Write("Hello, world".to string());

1s the same as

fn foo(x: String) -> Message {
Message: :Write(x)

}

let x = foo("Hello, world".to_string());

This is not immediately useful to us, but when we get to closures, we’ll
talk about passing functions as arguments to other functions. For example,
with iterators, we can do this to convert a vector of strings into a vector
of Message: :Writes:

let v = vec!["Hello".to_string(), "World".to_ string()];

let vl: Vec<Message> = v.into iter().map(Message::Write).collect();

Match

Often, a simple if/else isn’t enough, because you have more than two
possible options. Also, conditions can get quite complex. Rust has a

keyword, match, that allows you to replace complicated if/else groupings
with something more powerful. Check it out:

let x = 5;

match x {
1 => println!("one"),

2 => println!("two"),
3 => println!("three"),
4 => printlin!("four"),
5 => printin!("five"),
=> println!("something else"),

}

match takes an expression and then branches based on its value. Each ‘arm’
of the branch is of the form val => expression. When the value matches,
that arm’s expression will be evaluated. It’s called match because of the
term ‘pattern matching’, which match is an implementation of. There’s a
separate section on patterns that covers all the patterns that are possible
here.

One of the many advantages of match is it enforces ‘exhaustiveness
checking’. For example if we remove the last arm with the underscore _, the
compiler will give us an error:

error: non-exhaustive patterns: -~ not covered

Rust is telling us that we forgot some value. The compiler infers from x that
it can have any 32bit integer value; for example -2,147483,648 to
2,147.483,647. The acts as a ‘catch-all’, and will catch all possible values
that aren’t specified in an arm of match. As you can see in the previous
example, we provide match arms for integers 1-5, if x is 6 or any other
value, then it is caught by .

match 1is also an expression, which means we can use it on the right-hand
side of a 1let binding or directly where an expression is used:

let x = 5;

let number = match x {
1 => "one",
2 => "two",
3 => "three",

4 => "four",
5 => "five",
=> "something else",

}i

Sometimes it’s a nice way of converting something from one type to
another; in this example the integers are converted to string.

Matching on enums

Another important use of the match keyword is to process the possible
variants of an enum:

enum Message {
Quit,
ChangeColor(i32, i32, i32),
Move { x: i32, y: 1i32 },
Write(String),

fn quit() { /* ... */}
fn change_color(r: i32, g: 132, b: i32) { /* ... */}
fn move cursor(x: 132, y: i32) { /* ... */}

fn process_message(msg: Message) {
match msg {
Message::Quit => quit(),
Message: :ChangeColor(r, g, b) => change color(r, g, b),
Message::Move { X: X, y: y } => move_cursor(x, y),
Message: :Write(s) => printin!("{}", s),

}i

Again, the Rust compiler checks exhaustiveness, so it demands that you
have a match arm for every variant of the enum. If you leave one off, it will
give you a compile-time error unless you use _ or provide all possible arms.

Unlike the previous uses of match, you can’t use the normal if statement to
do this. You can use the if 1let statement, which can be seen as an
abbreviated form of match.

Patterns

Patterns are quite common in Rust. We use them in yariable bindings,
match expressions, and other places, too. Let’s go on a whirlwind tour of all
of the things patterns can do!

A quick refresher: you can match against literals directly, and _ acts as an
‘any’ case:

let x = 1;

match x {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"),
=> println!("anything"),

}

This prints one.

There’s one pitfall with patterns: like anything that introduces a new
binding, they introduce shadowing. For example:

let x
let c

1;
e

match c {
x => println!("x: {} c: {}", %, ¢),

}

println!("x: {}", x)

This prints:

In other words, x => matches the pattern and introduces a new binding
named x. This new binding is in scope for the match arm and takes on the
value of c. Notice that the value of x outside the scope of the match has no
bearing on the value of x within it. Because we already have a binding
named x, this new x shadows it.

Multiple patterns

You can match multiple patterns with |:

let x

1;

match x {
1 | 2 => println!("one or two"),
3 => println!("three"),

=> println!("anything"),

This prints one or two.

Destructuring

If you have a compound data type, like a struct, you can destructure it
inside of a pattern:

struct Point {
x: 132,
y: i32,

}

let origin = Point { x: 0, y: 0 };

match origin {
Point { x, y } => println!("({},{})", X, ¥),
}

We can use : to give a value a different name.

struct Point {
x: 132,
y: 132,

}

let origin = Point { x: 0, y: 0 };

match origin {
Point { x: x1, y: yl } => printIn!("({},{})", x1, yl),
}

If we only care about some of the values, we don’t have to give them all
names:

struct Point {
x: 132,
y: i32,

let point = Point { x: 2, y: 3 };

match point {
Point { x, .. } => println!("x is {}", x),

}

This prints x is 2.

You can do this kind of match on any member, not only the first:

struct Point {
x: 132,
y: i32,

}

let point = Point { x: 2, y: 3 };
match point {

Point { y, .. } => println!("y is {}", v),
}

This prints y is 3.

This ‘destructuring’ behavior works on any compound data type, like tuples
Or enums.

Ignoring bindings

You can use _ in a pattern to disregard the type and value. For example,
here’s a match against a Result<T, E>:

match some value {
Ok(value) => println!("got a value: {}", value),
Err(_) => printin!("an error occurred"),

In the first arm, we bind the value inside the ok variant to value. But in the
Err arm, we use _ to disregard the specific error, and print a general error
message.

_ is valid in any pattern that creates a binding. This can be useful to ignore
parts of a larger structure:

fn coordinate() -> (i32, i32, i32) {
// generate and return some sort of triple tuple

}

let (x, _, z) = coordinate();

Here, we bind the first and last element of the tuple to x and z, but ignore
the middle element.

It’s worth noting that using _never binds the value in the first place, which
means that the value does not move:

let tuple: (u32, String) = (5, String::from("five"));

// Here, tuple is moved, because the String moved:
let (x, _s) = tuple;

// The next line would give "error: use of partially moved value: “tuple’"
// println!("Tuple is: {:?}", tuple);

// However,
let tuple = (5, String::from("five"));

// Here, tuple is not moved, as the String was never moved, and u32 is Copy:
let (x, _) = tuple;

// That means this works:
println!("Tuple is: {:?}", tuple);

This also means that any temporary variables will be dropped at the end of
the statement:

// Here, the String created will be dropped immediately, as it’s not bound:

let _ = String::from(" hello ").trim();

You can also use .. in a pattern to disregard multiple values:

enum OptionalTuple {
value(i32, i32, i32),
Missing,

}
let x = OptionalTuple::Value(5, -2, 3);

match x {
OptionalTuple::Value(..) => println!("Got a tuple!"),

OptionalTuple::Missing => printlin!("No such luck."),

This prints Got a tuple!.

ref and ref mut

If you want to get a reference, use the ref keyword:

let x = 5;

match x {
ref r => printin!("Got a reference to {}", r),

}

This prints Got a reference to 5.

Here, the r inside the match has the type &i32. In other words, the ref
keyword creates a reference, for use in the pattern. If you need a mutable
reference, ref mut will work in the same way:

let mut x = 5;

match x {
ref mut mr => println!("Got a mutable reference to {}", mr),

}

Ranges

You can match a range of values with .. .:

let x = 1;

match x {
1 ... 5 => printin!("one through five"),
_ => println!("anything"),

This prints one through five.

Ranges are mostly used with integers and chars:

let x = '# ';

match x {

a' ... 'j' => printin!("early letter"),
'k' ... 'z' => println!("late letter"),
_ => println!("something else"),

This prints something else.
Bindings

You can bind values to names with @:

let x

1;

match x {
e @1 ... 5= println!("got a range element {}", e),
=> println!("anything"),

This prints got a range element 1. This is useful when you want to do a
complicated match of part of a data structure:

derive (Debug
struct Person {
name: Option<String>,

}

let name = "Steve'".to_string();
let x: Option<Person> = Some(Person { name: Some(name) });
match x {
Some (Person { name: ref a @ Some(_), .. }) => printin!("{:?}", a),

_={}

This prints some ("steve"): we’ve bound the inner name to a.

If you use @ with |, you need to make sure the name is bound in each part
of the pattern:

let x

5;

match x {
e@1l1l...5| e@8 ... 10 => println!("got a range element {}", e),
=> println!("anything"),

Guards

You can introduce ‘match guards’ with if:

enum OptionalInt {
Value(i32),
Missing,

}

let x = OptionallInt::Value(5);

match x {
OptionalInt::Value(i) if i > 5 => println!("Got an int bigger than five!"),
OptionalInt::Value(..) => println!("Got an int!"),
OptionalInt::Missing => println!("No such luck."),

This prints Got an int!.

If you're using if with multiple patterns, the if applies to both sides:

let x = 4;

let y = false;

match x {
4 | 5 if y => println!("yes"),
_ => println!("no"),

}

This prints no, because the if applies to the whole of 4 | 5, and not to only
the 5. In other words, the precedence of if behaves like this:

(4 | 5) if y => ...
not this:

4 | (5 if y) => ...
Mix and Match

Whew! That’s a lot of different ways to match things, and they can all be
mixed and matched, depending on what you’re doing:

match x {
Foo { x: Some(ref name), y: None } => ...

}

Patterns are very powerful. Make good use of them.

Method Syntax

Functions are great, but if you want to call a bunch of them on some data, it
can be awkward. Consider this code:

baz(bar(foo));

We would read this left-to-right, and so we see ‘baz bar foo’. But this isn’t
the order that the functions would get called in, that’s inside-out: ‘foo bar
baz’. Wouldn’t it be nice if we could do this instead?

foo.bar().baz();

Luckily, as you may have guessed with the leading question, you can! Rust
provides the ability to use this ‘method call syntax’ via the imp1 keyword.

Method calls

Here’s how it works:

struct Circle {
x: fé64,
y: f64,
radius: f64,

}

impl Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)
}
}

fn main() {
let ¢ = Circle { x: 0.0, y: 0.0, radius: 2.0 };
println!("{}", c.area());

}

This will print 12.566371.

We’ve made a struct that represents a circle. We then write an impl block,
and inside it, define a method, area.

Methods take a special first parameter, of which there are three variants:
self, &self, and smut self. You can think of this first parameter as being
the foo in foo.bar(). The three variants correspond to the three kinds of
things foo could be: self if it’s a value on the stack, sself if it’s a
reference, and smut self if it’s a mutable reference. Because we took the
sself parameter to area, we can use it like any other parameter. Because
we know it’s a circle, we can access the radius like we would with any
other struct.

We should default to using sself, as you should prefer borrowing over
taking ownership, as well as taking immutable references over mutable
ones. Here’s an example of all three variants:

struct Circle {
x: fo64,
y: f64,
radius: f64,

}

impl Circle {
fn reference(&self) {
println!("taking self by reference!");

}

fn mutable reference(&mut self) {
println!("taking self by mutable reference!");

}

fn takes ownership(self) {
printlin!("taking ownership of self!");

}

You can use as many impl blocks as you’d like. The previous example
could have also been written like this:

struct Circle {
x: fé64,
y: fé4,
radius: f64,

}

impl Circle {
fn reference(&self) {
printlin!("taking self by reference!");

}

impl Circle {
fn mutable reference(&mut self) {
printlin!("taking self by mutable reference!");

}
}

impl Circle {
fn takes ownership(self) {
println!("taking ownership of self!");

}

Chaining method calls

So, now we know how to call a method, such as foo.bar (). But what about
our original example, foo.bar().baz()? This is called ‘method chaining’.
Let’s look at an example:

struct Circle {
x: f64,
y: fé64,
radius: f64,

}

impl Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)

}

fn grow(&self, increment: f64) -> Circle {
Circle { x: self.x, y: self.y, radius: self.radius + increment }
}
}

fn main() {
let ¢ = Circle { x: 0.0, y: 0.0, radius: 2.0 };
println!("{}", c.area());

let d = c.grow(2.0).area();
printin!("{}", d);

Check the return type:

fn grow(&self, increment: f64) -> Circle {

We say we’re returning a circle. With this method, we can grow a new
Circle to any arbitrary size.

Associated functions

You can also define associated functions that do not take a self parameter.
Here’s a pattern that’s very common in Rust code:

struct Circle {
x: f64,
y: fé64,
radius: f64,

}

impl Circle {
fn new(x: f64, y: f64, radius: f64) -> Circle {
Circle {
X: X,
VO
radius: radius,

}

fn main() {
let ¢ = Circle::new(0.0, 0.0, 2.0);
}

This ‘associated function’ builds a new circle for us. Note that associated
functions are called with the struct::function() syntax, rather than the
ref.method() syntax. Some other languages call associated functions
‘static methods’.

Builder Pattern

Let’s say that we want our users to be able to create circles, but we will
allow them to only set the properties they care about. Otherwise, the x and y
attributes will be 0.0, and the radius will be 1.0. Rust doesn’t have
method overloading, named arguments, or variable arguments. We employ
the builder pattern instead. It looks like this:

struct Circle {
x: f64,
y: f64,
radius: f64,

}

impl Circle {
fn area(&self) -> f64 {

std::f64::consts::PI * (self.radius * self.radius)

}

}

struct CircleBuilder {
x: f64,
y: fé64,

radius: f64,

}

impl CircleBuilder {
fn new() -> CircleBuilder {
CircleBuilder { x: 0.0, y: 0.0, radius: 1.0, }
}

fn x(&mut self, coordinate: f64) -> &mut CircleBuilder {
self.x = coordinate;
self

fn y(&mut self, coordinate: f64) -> &mut CircleBuilder {
self.y = coordinate;
self

fn radius(&mut self, radius: f64) -> &mut CircleBuilder {
self.radius = radius;
self

fn finalize(&self) -> Circle {
Circle { x: self.x, y: self.y, radius: self.radius }

}
}
fn main() {
let ¢ = CircleBuilder: :new()
.x(1.0)
.y(2.0)

.radius(2.0)
.finalize();

println!("area: {}", c.area());
println!("x: {}", c.x);
println!("y: {}", c.y);

What we’ve done here 1s make another struct, circleBuilder. We’ve
defined our builder methods on it. We’ve also defined our area() method
on circle. We also made one more method on circleBuilder:
finalize(). This method creates our final circle from the builder. Now,
we’ve used the type system to enforce our concerns: we can use the

methods on circleBuilder to constrain making Circles in any way we
choose.

Strings

Strings are an important concept for any programmer to master. Rust’s
string handling system is a bit different from other languages, due to its
systems focus. Any time you have a data structure of variable size, things
can get tricky, and strings are a re-sizable data structure. That being said,
Rust’s strings also work differently than in some other systems languages,
such as C.

Let’s dig into the details. A ‘string’ is a sequence of Unicode scalar values
encoded as a stream of UTF-8 bytes. All strings are guaranteed to be a valid
encoding of UTF-8 sequences. Additionally, unlike some systems
languages, strings are not NUL-terminated and can contain NUL bytes.

Rust has two main types of strings: sstr and string. Let’s talk about sstr
first. These are called ‘string slices’. A string slice has a fixed size, and
cannot be mutated. It is a reference to a sequence of UTF-8 bytes.

let greeting = "Hello there."; // greeting: &'static str

"Hello there." is a string literal and its type is &'static str. A string
literal is a string slice that is statically allocated, meaning that it’s saved
inside our compiled program, and exists for the entire duration it runs. The
greeting binding is a reference to this statically allocated string. Any
function expecting a string slice will also accept a string literal.

String literals can span multiple lines. There are two forms. The first will
include the newline and the leading spaces:

let s = "foo
bar";

assert_eq!("foo\n bar", s);

The second, with a \, trims the spaces and the newline:

let s = "foo\
bar";

assert _eq!("foobar", s);

Note that you normally cannot access a str directly, but only through a
sstr reference. This is because str is an unsized type which requires
additional runtime information to be usable. For more information see the
chapter on unsized types.

Rust has more than only &strs though. A string is a heap-allocated string.
This string is growable, and is also guaranteed to be UTF-8. strings are
commonly created by converting from a string slice using the to string
method.

let mut s = "Hello".to_string(); // mut s: String
println!("{}", s);

s.push_str(", world.");
println!("{}", s);

strings will coerce into &str with an &:

fn takes slice(slice: &str) {
println!("Got: {}", slice);
}

fn main() {
let s = "Hello".to_string();
takes_slice(&s);

This coercion does not happen for functions that accept one of &str’s traits
instead of sstr. For example, Tcpstream: : connect has a parameter of type
ToSocketAddrs. A &str is okay but a string must be explicitly converted
using &*.

use std::net::TcpStream;
TcpStream: :connect("192.168.0.1:3000"); // &str parameter

let addr_string = "192.168.0.1:3000".to_string();
TcpStream: :connect(&*addr_string); // convert addr string to &str

http://doc.rust-lang.org/std/net/struct.TcpStream.html#method.connect

Viewing a string as a &str is cheap, but converting the sstr to a String
involves allocating memory. No reason to do that unless you have to!

Indexing

Because strings are valid UTF-8, they do not support indexing:

let s = "hello";

println!("The first letter of s is {}", s[0]); // ERROR!!!

Usually, access to a vector with [] is very fast. But, because each character
in a UTF-8 encoded string can be multiple bytes, you have to walk over the
string to find the n™ letter of a string. This is a significantly more expensive
operation, and we don’t want to be misleading. Furthermore, ‘letter’ isn’t

something defined in Unicode, exactly. We can choose to look at a string as
individual bytes, or as codepoints:

let hachiko = "EARN\FA";
for b in hachiko.as bytes() {

print!("{}, ", b);
}

println!("");

for ¢ in hachiko.chars() {
print!("{}, ", c);
}

println!("");
This prints:

229, 191, 160, 231, 138, 172, 227, 131, 143, 227, 131, 129, 229, 133, 172,
B, X,)\, F, A,

As you can see, there are more bytes than chars.

You can get something similar to an index like this:

let dog = hachiko.chars().nth(l); // kinda like hachiko[1]

This emphasizes that we have to walk from the beginning of the list of

chars.
Slicing

You can get a slice of a string with slicing syntax:

let dog = "hachiko";
let hachi = &dog[0..5] ;

But note that these are byte offsets, not character offsets. So this will fail at
runtime:

let dog = "BRNFA";
let hachi = &dog[0..2] ;

with this error:

thread 'main' panicked at 'index 0 and/or 2 in ~EAR/\F/A~ do not lie on
character boundary'

Concatenation

If you have a string, you can concatenate a sstr to the end of it:

let hello
let world

"Hello ".to_string();
"world!";

let hello world = hello + world;

But if you have two strings, you need an &:

let hello
let world

"Hello ".to_string();
"world!".to_string();

let hello_world = hello + &world;

This is because &String can automatically coerce to a sstr. This is a
feature called ‘pDeref_coercions’.

Generics

Sometimes, when writing a function or data type, we may want it to work
for multiple types of arguments. In Rust, we can do this with generics.
Generics are called ‘parametric polymorphism’ in type theory, which means
that they are types or functions that have multiple forms (‘poly’ is multiple,
‘morph’ is form) over a given parameter (‘parametric’).

Anyway, enough type theory, let’s check out some generic code. Rust’s
standard library provides a type, option<T>, that’s generic:

enum Option<T> {
Some(T),
None,

}

The <T> part, which you’ve seen a few times before, indicates that this is a
generic data type. Inside the declaration of our enum, wherever we see a T,
we substitute that type for the same type used in the generic. Here’s an
example of using option<T>, with some extra type annotations:

let x: Option<i32> = Some(5);

In the type declaration, we say option<i32>. Note how similar this looks to
Option<T>. S0, in this particular option, T has the value of i32. On the
right-hand side of the binding, we make a some(T), where T is 5. Since
that’s an i32, the two sides match, and Rust is happy. If they didn’t match,
we’d get an error:

let x: Option<f64> = Some(5);
// error: mismatched types: expected “core::option::Option<f64>"~,
// found “core::option::Option< > (expected f64 but found integral variable)

That doesn’t mean we can’t make option<T>s that hold an £64! They have
to match up:

let x: Option<i32>
let y: Option<f64>

Some(5);
Some(5.0£64);

This is just fine. One definition, multiple uses.

Generics don’t have to only be generic over one type. Consider another type
from Rust’s standard library that’s similar, Result<T, E>:

enum Result<T, E> {
Ok(T),
Err(E),

This type is generic over two types: T and E. By the way, the capital letters
can be any letter you’d like. We could define Result<T, E> as:

enum Result<A, Z> {
Ok(a),
Err(z),

if we wanted to. Convention says that the first generic parameter should be
T, for ‘type’, and that we use E for ‘error’. Rust doesn’t care, however.

The Result<T, E> type is intended to be used to return the result of a
computation, and to have the ability to return an error if it didn’t work out.

Generic functions

We can write functions that take generic types with a similar syntax:

fn takes anything<T>(x: T) {
// do something with x

}

The syntax has two parts: the <T> says “this function is generic over one
type, 7, and the x: T says “x has the type T.”

Multiple arguments can have the same generic type:

fn takes two_of the same things<T>(x: T, y: T) {
/Y ooa
}

We could write a version that takes multiple types:

fn takes two things<T, U>(x: T, y: U) {
/Y ooo
}

Generic structs

You can store a generic type in a struct as well:

struct Point<T> {
x: T,
y: T,

}

let int origin = Point { x: 0, y: 0 };
let float origin = Point { x: 0.0, y: 0.0 };

Similar to functions, the <T> is where we declare the generic parameters,
and we then use x: T in the type declaration, too.

When you want to add an implementation for the generic struct, you
declare the type parameter after the impl:

impl<T> Point<T> {
fn swap(&mut self) {
std::mem: :swap(&mut self.x, &mut self.y);

}

So far you’ve seen generics that take absolutely any type. These are useful
in many cases: you've already seen option<T>, and later you’ll meet
universal container types like vec<T>. On the other hand, often you want to
trade that flexibility for increased expressive power. Read about trait bounds
to see why and how.

Traits

A trait is a language feature that tells the Rust compiler about functionality
a type must provide.

Recall the impl keyword, used to call a function with method syntax:

struct Circle {
x: fo64,
y: f64,
radius: f64,

}

impl Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)

http://doc.rust-lang.org/std/vec/struct.Vec.html

Traits are similar, except that we first define a trait with a method signature,
then implement the trait for a type. In this example, we implement the trait
HasArea for circle:

struct Circle {
x: f64,
y: fé64,
radius: f64,

}

trait HasArea {
fn area(&self) -> f64;

}

impl HasArea for Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)

}

As you can see, the trait block looks very similar to the impl block, but
we don’t define a body, only a type signature. When we impl a trait, we use
impl Trait for Item,rather than only impl Item.

Trait bounds on generic functions

Traits are useful because they allow a type to make certain promises about
its behavior. Generic functions can exploit this to constrain, or bound, the
types they accept. Consider this function, which does not compile:

fn print area<T>(shape: T) {
println!("This shape has an area of {}", shape.area());

}

Rust complains:

error: no method named “area” found for type "T in the current scope

Because T can be any type, we can’t be sure that it implements the area
method. But we can add a trait bound to our generic T, ensuring that it does:

fn print area<T: HasArea>(shape: T) {
println!("This shape has an area of {}", shape.area());

}

The syntax <T: HasArea> means “any type that implements the HasArea
trait.” Because traits define function type signatures, we can be sure that
any type which implements Hasarea will have an .area () method.

Here’s an extended example of how this works:

trait HasArea {
fn area(&self) -> f64;

}

struct Circle {
x: f64,
y: fé64,

radius: f64,

}

impl HasArea for Circle {
fn area(&self) -> f64 {
std::f64::consts::PI * (self.radius * self.radius)

}

}

struct Square {
x: fo64,
y: f64,
side: f64,

}

impl HasArea for Square {
fn area(&self) -> f64 {
self.side * self.side
}
}

fn print area<T: HasArea>(shape: T) {
println!("This shape has an area of {}", shape.area());

}
fn main() {
let ¢ = Circle {
x: 0.0f64,
y: 0.0f64,
radius: 1.0f64,
b
let s = Square {
x: 0.0f64,
y: 0.0f64,

side: 1.0f64,

}i

print area(c);
print area(s);

This program outputs:

This shape has an area of 3.141593
This shape has an area of 1

As you can see, print area 1S NOW generic, but also ensures that we have
y p _
passed in the correct types. If we pass in an incorrect type:

print area(5);

We get a compile-time error:

error: the trait bound ~_: HasArea is not satisfied [E0277]

Trait bounds on generic structs

Your generic structs can also benefit from trait bounds. All you need to do is
append the bound when you declare type parameters. Here is a new type
Rectangle<T> and its operation is_square():

struct Rectangle<T> {
x: T,
y: T,
width: T,
height: T,
}

impl<T: PartialEqg> Rectangle<T> {
fn is_square(&self) -> bool {
self.width == self.height
}
}

fn main() {
let mut r = Rectangle {

x: 0,

y: 0,
width: 47,
height: 47,

}i

assert!(r.is_square());

r.height = 42;
assert!(l!r.is _square());

}

is square() needs to check that the sides are equal, so the sides must be of
a type that implements the core: :cmp: : PartialEg trait:

impl<T: PartialEgq> Rectangle<T> { ... }

Now, a rectangle can be defined in terms of any type that can be compared
for equality.

Here we defined a new struct Rectangle that accepts numbers of any
precision—really, objects of pretty much any type—as long as they can be
compared for equality. Could we do the same for our HasArea structs,
Square and circle? Yes, but they need multiplication, and to work with
that we need to know more about operator traits.

Rules for implementing traits

So far, we’ve only added trait implementations to structs, but you can
implement a trait for any type. So technically, we could implement HasArea
for i32:

trait HasArea {
fn area(&self) -> f64;

}
impl HasArea for i32 {
fn area(&self) -> f64 {
println!("this is silly");
*self as f64

}

5.area();

It is considered poor style to implement methods on such primitive types,
even though it is possible.

http://doc.rust-lang.org/core/cmp/trait.PartialEq.html

This may seem like the Wild West, but there are two restrictions around
implementing traits that prevent this from getting out of hand. The first is
that if the trait isn’t defined in your scope, it doesn’t apply. Here’s an
example: the standard library provides a write trait which adds extra
functionality to Files, for doing file I/O. By default, a File won’t have its
methods:

let mut f = std::fs::File::open("foo.txt").expect("Couldn’t open foo.txt");
let buf = b"whatever"; // byte string literal. buf: &[u8; 8]
let result = f.write(buf);

Here’s the error:

error: type “std::fs::File” does not implement any method in scope named “write~
let result = f.write(buf);

We need to use the write trait first:
use std::io::Write;

let mut f = std::fs::File::open("foo.txt").expect("Couldn’'t open foo.txt");
let buf = b"whatever";
let result = f.write(buf);

This will compile without error.

This means that even if someone does something bad like add methods to
i32, it won’t affect you, unless you use that trait.

There’s one more restriction on implementing traits: either the trait or the
type you’re implementing it for must be defined by you. Or more precisely,
one of them must be defined in the same crate as the impl you’re writing.
For more on Rust’s module and package system, see the chapter on crates
and modules.

So, we could implement the HasArea type for i32, because we defined
HasArea in our code. But if we tried to implement ToString, a trait
provided by Rust, for i32, we could not, because neither the trait nor the
type are defined in our crate.

http://doc.rust-lang.org/std/io/trait.Write.html

One last thing about traits: generic functions with a trait bound use
‘monomorphization’ (mono: one, morph: form), so they are statically
dispatched. What’s that mean? Check out the chapter on trait objects for
more details.

Multiple trait bounds

You’ve seen that you can bound a generic type parameter with a trait:

fn foo<T: Clone>(x: T) {
x.clone();

}

If you need more than one bound, you can use +:

use std::fmt: :Debug;

fn foo<T: Clone + Debug>(x: T) {
x.clone();
println!("{:?}", X);

}

T now needs to be both clone as well as bebug.

Where clause

Writing functions with only a few generic types and a small number of trait
bounds isn’t too bad, but as the number increases, the syntax gets
increasingly awkward:

use std::fmt: :Debug;

fn foo<T: Clone, K: Clone + Debug>(x: T, y: K) {
x.clone();
y.clone();
println!("{:?}", y);

}

The name of the function is on the far left, and the parameter list is on the
far right. The bounds are getting in the way.

Rust has a solution, and it’s called a ‘where clause’:

use std::fmt: :Debug;

fn foo<T: Clone, K: Clone + Debug>(x: T, y: K) {
x.clone();
y.clone();
println!("{:?}", y);

}

fn bar<T, K>(x: T, y: K) where T: Clone, K: Clone + Debug {
x.clone();
y.clone();
println!("{:?}", ¥);

}

fn main() {
foo("Hello", "world");
bar("Hello", "world");

foo() uses the syntax we showed earlier, and bar () uses a where clause.
All you need to do is leave off the bounds when defining your type
parameters, and then add where after the parameter list. For longer lists,
whitespace can be added:

use std::fmt: :Debug;

fn bar<T, K>(x: T, y: K)
where T: Clone,
K: Clone + Debug {

X.clone();
y.clone();
println!("{:?}", y);

This flexibility can add clarity in complex situations.

where 1s also more powerful than the simpler syntax. For example:

trait ConvertTo<Output> {
fn convert(&self) -> Output;

}

impl ConvertTo<i64> for i32 {
fn convert(&self) -> i64 { *self as i64 }

}

// can be called with T == 132
fn normal<T: ConvertTo<i64>>(x: &T) -> i64 {
x.convert ()

}

// can be called with T == 164
fn inverse<T>(x: i32) -> T
// this is using ConvertTo as if it were "ConvertTo<i6 4>"
where i32: ConvertTo<T> {
x.convert ()

This shows off the additional feature of where clauses: they allow bounds
on the left-hand side not only of type parameters T, but also of types (i32 in
this case). In this example, i32 must implement convertTo<T>. Rather than
defining what i32 is (since that’s obvious), the where clause here constrains
T.

Default methods

A default method can be added to a trait definition if it is already known
how a typical implementor will define a method. For example,
is_invalid() is defined as the opposite of is valid():

trait Foo {
fn is_valid(&self) -> bool;

fn is_invalid(&self) -> bool { !self.is valid() }

Implementors of the Foo trait need to implement is valid() but not
is_invalid() due to the added default behavior. This default behavior can
still be overridden as in:

struct UseDefault;

impl Foo for UseDefault {
fn is valid(&self) -> bool {
printlin!("Called UseDefault.is valid.");
true

}
struct OverrideDefault;

impl Foo for OverrideDefault {
fn is _valid(&self) -> bool {
println!("Called OverrideDefault.is valid.");
true

fn is invalid(&self) -> bool {
printin!("Called OverrideDefault.is invalid!");
true // overrides the expected value of is_invalid()

}

let default = UseDefault;
assert!(!default.is_invalid()); // prints "Called UseDefault.is valid."

let over = OverrideDefault;
assert!(over.is_invalid()); // prints "Called OverrideDefault.is invalid!"

Inheritance

Sometimes, implementing a trait requires implementing another trait:

trait Foo {
fn foo(&self);

}
trait FooBar : Foo {

fn foobar(&self);
}

Implementors of FooBar must also implement Foo, like this:

struct Baz;
impl Foo for Baz {
fn foo(&self) { println!("foo"); }
}
impl FooBar for Baz {

fn foobar(&self) { println!("foobar"); }
}

If we forget to implement Foo, Rust will tell us:
error: the trait bound "main::Baz : main::Foo is not satisfied [E0277]
Deriving

Implementing traits like bebug and pefault repeatedly can become quite
tedious. For that reason, Rust provides an attribute that allows you to let
Rust automatically implement traits for you:

derive (Debug
struct Foo;

fn main() {
printlin!("{:?}", Foo);
}

However, deriving is limited to a certain set of traits:

® Clone

¢ Copy.

® Debug

® Default

® PartialEqg
® PartialOrd

Drop

Now that we’ve discussed traits, let’s talk about a particular trait provided
by the Rust standard library, prop. The prop trait provides a way to run
some code when a value goes out of scope. For example:

struct HasDrop;

impl Drop for HasDrop {
fn drop(&mut self) {
println!("Dropping!");
}
}

fn main() {
let x = HasDrop;

// do stuff
} // x goes out of scope here
When x goes out of scope at the end of main(), the code for prop will run.

prop has one method, which is also called drop(). It takes a mutable
reference to self.

http://doc.rust-lang.org/core/clone/trait.Clone.html
http://doc.rust-lang.org/core/marker/trait.Copy.html
http://doc.rust-lang.org/core/fmt/trait.Debug.html
http://doc.rust-lang.org/core/default/trait.Default.html
http://doc.rust-lang.org/core/cmp/trait.Eq.html
http://doc.rust-lang.org/core/hash/trait.Hash.html
http://doc.rust-lang.org/core/cmp/trait.Ord.html
http://doc.rust-lang.org/core/cmp/trait.PartialEq.html
http://doc.rust-lang.org/core/cmp/trait.PartialOrd.html
http://doc.rust-lang.org/std/ops/trait.Drop.html

That’s it! The mechanics of prop are very simple, but there are some
subtleties. For example, values are dropped in the opposite order they are
declared. Here’s another example:

struct Firework {
strength: i32,
}

impl Drop for Firework {
fn drop(&mut self) {
println!("BOOM times {}!!!", self.strength);
}
}

fn main() {
let firecracker = Firework { strength: 1 };
let tnt = Firework { strength: 100 };

This will output:

BOOM times 100!!!
BOOM times 1!!!

The tnt goes off before the firecracker does, because it was declared
afterwards. Last in, first out.

So what is prop good for? Generally, brop is used to clean up any resources
associated with a struct. For example, the arc<T>_type is a reference-
counted type. When prop is called, it will decrement the reference count,
and if the total number of references is zero, will clean up the underlying
value.

if let

if let allows you to combine if and let together to reduce the overhead
of certain kinds of pattern matches.

For example, let’s say we have some sort of option<T>. We want to call a
function on it if it’s Some<T>, but do nothing if it’s None. That looks like
this:

http://doc.rust-lang.org/std/sync/struct.Arc.html

match option {
Some(x) => { foo(x) },
None => {},

We don’t have to use match here, for example, we could use if:

if option.is_some() {
let x = option.unwrap();
foo(x);

Neither of these options is particularly appealing. We can use if let to do
the same thing in a nicer way:

if let Some(x) = option {
foo(x);

}

If a pattern matches successfully, it binds any appropriate parts of the value
to the identifiers in the pattern, then evaluates the expression. If the pattern
doesn’t match, nothing happens.

If you want to do something else when the pattern does not match, you can
use else:

if let Some(x) = option {
foo(x);

} else {
bar();

}

while let

In a similar fashion, while let can be used when you want to conditionally
loop as long as a value matches a certain pattern. It turns code like this:

let mut v = vec![1, 3, 5, 7, 11];
loop {
match v.pop() {
Some(x) => println!("{}", x),
None => break,

Into code like this:

let mut v = vec![1, 3, 5, 7, 11];

while let Some(x) = v.pop() {
printin!("{}", x);

}

Trait Objects

When code involves polymorphism, there needs to be a mechanism to
determine which specific version is actually run. This is called ‘dispatch’.
There are two major forms of dispatch: static dispatch and dynamic
dispatch. While Rust favors static dispatch, it also supports dynamic
dispatch through a mechanism called ‘trait objects’.

Background

For the rest of this chapter, we’ll need a trait and some implementations.
Let’s make a simple one, Foo. It has one method that is expected to return a
String.

trait Foo {

fn method(&self) -> String;
}

We’ll also implement this trait for us and string:

impl Foo for u8 {
fn method(&self) -> String { format!/("u8: {}", *self) }

}

impl Foo for String {
fn method(&self) -> String { format!("string: {}", *self) }

}

Static dispatch

We can use this trait to perform static dispatch with trait bounds:

fn do_something<T: Foo>(x: T) {
x.method();
}

fn main() {
let x
let y

5u8;
"Hello".to_string();

do_something(x);
do_something(y);
}

Rust uses ‘monomorphization’ to perform static dispatch here. This means
that Rust will create a special version of do_something() for both ug and
string, and then replace the call sites with calls to these specialized
functions. In other words, Rust generates something like this:

fn do_something_u8(x: u8) {
x.method();
}

fn do_something string(x: String) {
x.method();
}

let x

fn main() {
let y =

5u8;
"Hello".to_string();

do_something u8(x);
do_something string(y);

}

This has a great upside: static dispatch allows function calls to be inlined
because the callee is known at compile time, and inlining is the key to good
optimization. Static dispatch is fast, but it comes at a tradeoff: ‘code bloat’,
due to many copies of the same function existing in the binary, one for each

type.

Furthermore, compilers aren’t perfect and may “optimize” code to become
slower. For example, functions inlined too eagerly will bloat the instruction
cache (cache rules everything around us). This is part of the reason that #
[inline] and #[inline(always)] should be used carefully, and one reason
why using a dynamic dispatch is sometimes more efficient.

However, the common case is that it is more efficient to use static dispatch,
and one can always have a thin statically-dispatched wrapper function that

does a dynamic dispatch, but not vice versa, meaning static calls are more
flexible. The standard library tries to be statically dispatched where possible
for this reason.

Dynamic dispatch

Rust provides dynamic dispatch through a feature called ‘trait objects’.
Trait objects, like &Foo or Box<Foo>, are normal values that store a value of
any type that implements the given trait, where the precise type can only be
known at runtime.

A trait object can be obtained from a pointer to a concrete type that
implements the trait by casting it (e.g. sx as &Foo) Or coercing it
(e.g. using &x as an argument to a function that takes sFoo).

These trait object coercions and casts also work for pointers like smut T to
smut Foo and Box<T> t0 Box<Foo>, but that’s all at the moment. Coercions
and casts are identical.

This operation can be seen as ‘erasing’ the compiler’s knowledge about the
specific type of the pointer, and hence trait objects are sometimes referred to
as ‘type erasure’.

Coming back to the example above, we can use the same trait to perform
dynamic dispatch with trait objects by casting:

fn do_something(x: &Foo) {
x.method();

}

fn main() {
let x = 5u8;
do_something(&x as &Foo);

}
or by coercing:

fn do_something(x: &Foo) {
x.method();

}

fn main() {
let x = "Hello".to_string();
do_something(&x);

}

A function that takes a trait object is not specialized to each of the types that
implements Foo: only one copy is generated, often (but not always)
resulting in less code bloat. However, this comes at the cost of requiring
slower virtual function calls, and effectively inhibiting any chance of
inlining and related optimizations from occurring.

Why pointers?

Rust does not put things behind a pointer by default, unlike many managed
languages, so types can have different sizes. Knowing the size of the value
at compile time is important for things like passing it as an argument to a
function, moving it about on the stack and allocating (and deallocating)
space on the heap to store it.

For rFoo, we would need to have a value that could be at least either a
Sstring (24 bytes) or a us (1 byte), as well as any other type for which
dependent crates may implement Foo (any number of bytes at all). There’s
no way to guarantee that this last point can work if the values are stored
without a pointer, because those other types can be arbitrarily large.

Putting the value behind a pointer means the size of the value is not relevant
when we are tossing a trait object around, only the size of the pointer itself.

Representation

The methods of the trait can be called on a trait object via a special record
of function pointers traditionally called a ‘vtable’ (created and managed by
the compiler).

Trait objects are both simple and complicated: their core representation and
layout is quite straight-forward, but there are some curly error messages and
surprising behaviors to discover.

Let’s start simple, with the runtime representation of a trait object. The
std::raw module contains structs with layouts that are the same as the
complicated built-in types, including trait objects:

pub struct TraitObject {
pub data: *mut (),
pub vtable: *mut (),

That is, a trait object like sFoo consists of a ‘data’ pointer and a ‘vtable’
pointer.

The data pointer addresses the data (of some unknown type T) that the trait
object is storing, and the vtable pointer points to the vtable (‘virtual method
table’) corresponding to the implementation of Foo for T.

A vtable is essentially a struct of function pointers, pointing to the concrete
piece of machine code for each method in the implementation. A method
call like trait_object.method() Will retrieve the correct pointer out of the
vtable and then do a dynamic call of it. For example:

struct FooVtable {
destructor: fn(*mut ()),
size: usize,
align: usize,

method: fn(*const ()) -> String,
}
// u8:
fn call method on_u8(x: *const ()) -> String {

// the compiler guarantees that this function is only called
// with “x° pointing to a u8
let byte: &u8 = unsafe { &*(x as *const u8) };

byte.method ()
}

static Foo for u8 vtable: FooVtable = FooVtable {
destructor: /* compiler magic */,
size: 1,
align: 1,

// cast to a function pointer
method: call method on u8 as fn(*const ()) -> String,

http://doc.rust-lang.org/std/raw/struct.TraitObject.html

// String:

fn call method _on_ String(x: *const ()) -> String {

// the compiler guarantees that this function is only called

// with “x° pointing to a String
let string: &String = unsafe { &*(x as *const String) };

string.method()
}

static Foo for String vtable: FooVtable = FooVtable {
destructor: /* compiler magic */,

// values for a 64-bit computer, halve them for 32-bit ones

size: 24,
align: 8,

method: call method on_String as fn(*const ()) -> String,

b

The destructor field in each vtable points to a function that will clean up
any resources of the vtable’s type: for u8 it is trivial, but for string it will
free the memory. This is necessary for owning trait objects like Box<Foo>,
which need to clean-up both the Box allocation as well as the internal type
when they go out of scope. The size and align fields store the size of the
erased type, and its alignment requirements; these are essentially unused at
the moment since the information is embedded in the destructor, but will be
used in the future, as trait objects are progressively made more flexible.

Suppose we’ve got some values that implement Foo. The explicit form of
construction and use of Foo trait objects might look a bit like (ignoring the

type mismatches: they’re all pointers anyway):

let a: String = "foo".to_string();
let x: u8 = 1;

// let b: &Foo = &a;
let b = TraitObject {

// store the data

data: &a,

// store the methods

vtable: &Foo for String vtable
b

// let y: &Foo = x;

let y = TraitObject {
// store the data
data: &x,

// store the methods
vtable: &Foo_ for u8 vtable
bi

// b.method();
(b.vtable.method) (b.data);

// y.method();
(y.vtable.method) (y.data);

Object Safety
Not every trait can be used to make a trait object. For example, vectors
implement Clone, but if we try to make a trait object:

let v
let o

vec![1l, 2, 3];
&v as &Clone;

We get an error:

error: cannot convert to a trait object because trait “core::clone::Clone~ is not
obje

L ct-safe [E0038]

let o = &v as &Clone;

~

note: the trait cannot require that “Self : Sized"
let o = &v as &Clone;

~

The error says that clone is not ‘object-safe’. Only traits that are object-safe
can be made into trait objects. A trait is object-safe if both of these are true:

e the trait does not require that self: sized
e all of its methods are object-safe

So what makes a method object-safe? Each method must require that self:
sized or all of the following:

e must not have any type parameters
* must not use self

Whew! As we can see, almost all of these rules talk about self. A good
intuition is “except in special circumstances, if your trait’s method uses
Self, it is not object-safe.”

Closures

Sometimes it is useful to wrap up a function and free variables for better
clarity and reuse. The free variables that can be used come from the
enclosing scope and are ‘closed over’ when used in the function. From this,
we get the name ‘closures’ and Rust provides a really great implementation
of them, as we’ll see.

Syntax

Closures look like this:

let plus_one = |x: i32| x + 1;

assert eqg!(2, plus_one(l));

We create a binding, plus one, and assign it to a closure. The closure’s
arguments go between the pipes (|), and the body is an expression, in this

case,x + 1.Remember that { } is an expression, so we can have multi-line
closures too:

let plus_two = |x]| {
let mut result: i32 = x;

result += 1;
result += 1;

result

bi

assert eq!(4, plus_two(2));

You’ll notice a few things about closures that are a bit different from regular
named functions defined with fn. The first is that we did not need to

annotate the types of arguments the closure takes or the values it returns.
We can:

let plus_one = |x: i32| -> i32 { x + 1 };

assert eq!(2, plus_one(l));

But we don’t have to. Why is this? Basically, it was chosen for ergonomic
reasons. While specifying the full type for named functions is helpful with
things like documentation and type inference, the full type signatures of
closures are rarely documented since they’re anonymous, and they don’t
cause the kinds of error-at-a-distance problems that inferring named
function types can.

The second is that the syntax is similar, but a bit different. I’ve added
spaces here for easier comparison:

fn plus one vl (x: i32) => i32 { x + 1}
let plus_one v2 = |x: i32| -> i32 { x + 1 };
let plus one v3 = |x: i32] x+ 1 ;

Small differences, but they’re similar.

Closures and their environment

The environment for a closure can include bindings from its enclosing
scope in addition to parameters and local bindings. It looks like this:

let num = 5;
let plus_num = |x: i32| x + num;

assert _eqg! (10, plus_num(5));

This closure, plus num, refers to a let binding in its scope: num. More
specifically, it borrows the binding. If we do something that would conflict
with that binding, we get an error. Like this one:

let mut num = 5;
let plus _num = |x: i32| x + num;

let y = &mut num;

Which errors with:

error: cannot borrow “num~ as mutable because it is also borrowed as immutable
let y = &mut num;
note: previous borrow of “num® occurs here due to use in closure; the immutable
borrow prevents subsequent moves or mutable borrows of “num” until the borrow
ends
let plus num = |x| x + num;

note: previous borrow ends here
fn main() {

let mut num = 5;

let plus_num = |x| x + num;

let y = &mut num;

A verbose yet helpful error message! As it says, we can’t take a mutable
borrow on num because the closure is already borrowing it. If we let the
closure go out of scope, we can:

let mut num = 5;

{

let plus_num = |x: i32| x + num;
} // plus_num goes out of scope, borrow of num ends

let y = &mut num;

If your closure requires it, however, Rust will take ownership and move the
environment instead. This doesn’t work:

let nums = vec![1, 2, 3];
let takes nums = || nums;

println!("{:?}", nums);

We get this error:

note: “nums moved into closure environment here because it has type
“[closure(()) -> collections::vec::Vec<i32>]", which is non-copyable
let takes nums = || nums;

vec<T> has ownership over its contents, and therefore, when we refer to it
in our closure, we have to take ownership of nums. It’s the same as if we’d
passed nums to a function that took ownership of it.

move closures

We can force our closure to take ownership of its environment with the
move keyword:

let num = 5;

let owns_num = move |x: i32| x + num;

Now, even though the keyword is move, the variables follow normal move
semantics. In this case, 5 implements Copy, and SO owns num takes
ownership of a copy of num. So what’s the difference?

let mut num = 5;

{

let mut add num = |x: i32| num += x;

add _num(5);
}

assert _eq!(10, num);

So 1n this case, our closure took a mutable reference to num, and then when
we called add_num, it mutated the underlying value, as we’d expect. We also
needed to declare add num as mut too, because we’re mutating its
environment.

If we change to a move closure, it’s different:

let mut num = 5;

{

let mut add num = move |x: i32| num += x;

add num(5);
}

assert eq!(5, num);

We only get 5. Rather than taking a mutable borrow out on our num, we took
ownership of a copy.

Another way to think about move closures: they give a closure its own stack
frame. Without move, a closure may be tied to the stack frame that created
it, while a move closure is self-contained. This means that you cannot
generally return a non-move closure from a function, for example.

But before we talk about taking and returning closures, we should talk some
more about the way that closures are implemented. As a systems language,
Rust gives you tons of control over what your code does, and closures are
no different.

Closure implementation

Rust’s implementation of closures is a bit different than other languages.
They are effectively syntax sugar for traits. You’ll want to make sure to
have read the traits section before this one, as well as the section on trait
objects.

Got all that? Good.

The key to understanding how closures work under the hood is something a
bit strange: Using () to call a function, like foo(), is an overloadable
operator. From this, everything else clicks into place. In Rust, we use the
trait system to overload operators. Calling functions is no different. We
have three separate traits to overload with:

pub trait Fn<Args> : FnMut<Args> {
extern "rust-call" fn call(&self, args: Args) -> Self::Output;

}

pub trait FnMut<Args> : FnOnce<Args> {
extern "rust-call" fn call mut(&mut self, args: Args) -> Self::Output;

pub trait FnOnce<Args> {
type Output;

extern "rust-call" fn call once(self, args: Args) -> Self::Output;

}

You’ll notice a few differences between these traits, but a big one is self:
Fn takes &self, FnMut takes amut self, and Fnonce takes self. This covers
all three kinds of self via the usual method call syntax. But we’ve split
them up into three traits, rather than having a single one. This gives us a
large amount of control over what kind of closures we can take.

The || {} syntax for closures is sugar for these three traits. Rust will
generate a struct for the environment, impl the appropriate trait, and then
use it.

Taking closures as arguments

Now that we know that closures are traits, we already know how to accept
and return closures: the same as any other trait!

This also means that we can choose static vs dynamic dispatch as well.
First, let’s write a function which takes something callable, calls it, and
returns the result:

fn call with_one<F>(some_closure: F) -> 132
where F : Fn(i32) -> i32 {

some_closure(1l)

}
let answer = call with one(|x| x + 2);

assert eq!(3, answer);

We pass our closure, |x| x + 2, to call with one. It does what it
suggests: it calls the closure, giving it 1 as an argument.

Let’s examine the signature of call with one in more depth:

fn call with_one<F>(some_closure: F) -> 132

We take one parameter, and it has the type r. We also return a i32. This part
isn’t interesting. The next part is:

where F : Fn(i32) -> i32 {

Because Fn is a trait, we can use it as a bound for our generic type. In this
case, our closure takes a i32 as an argument and returns an i32, and so the
generic bound we use is Fn(i32) -> i32.

There’s one other key point here: because we’re bounding a generic with a
trait, this will get monomorphized, and therefore, we’ll be doing static

dispatch into the closure. That’s pretty neat. In many languages, closures
are inherently heap allocated, and will always involve dynamic dispatch. In
Rust, we can stack allocate our closure environment, and statically dispatch
the call. This happens quite often with iterators and their adapters, which
often take closures as arguments.

Of course, if we want dynamic dispatch, we can get that too. A trait object
handles this case, as usual:

fn call with one(some closure: &Fn(i32) -> i32) -> i32 {
some_closure(1l)

}

let answer = call with one(&|x| x + 2);

assert eq!(3, answer);

Now we take a trait object, a sFn. And we have to make a reference to our
closure when we pass it to call with one, SO we use &| |.

A quick note about closures that use explicit lifetimes. Sometimes you
might have a closure that takes a reference like so:

fn call with ref<F>(some_ closure:F) -> i32
where F: Fn(&i32) -> i32 {

let mut value = 0;
some closure(&value)

Normally you can specify the lifetime of the parameter to our closure. We
could annotate it on the function declaration:

fn call_with_ref<'a, F>(some_closure:F) -> i32
where F: Fn(&'a i32) -> i32 {

However this presents a problem with in our case. When you specify the
explicit lifetime on a function it binds that lifetime to the entire scope of the
function instead of just the invocation scope of our closure. This means that
the borrow checker will see a mutable reference in the same lifetime as our
immutable reference and fail to compile.

In order to say that we only need the lifetime to be valid for the invocation
scope of the closure we can use Higher-Ranked Trait Bounds with the
for<...> syntax:

fn call_with_ref<F>(some_closure:F) -> i32
where F: for<'a> Fn(&'a i32) -> i32 {

This lets the Rust compiler find the minimum lifetime to invoke our closure
and satisfy the borrow checker’s rules. Our function then compiles and
executes as we expect.

fn call with_ref<F>(some_ closure:F) -> i32
where F: for<'a> Fn(&'a i32) -> i32 {

let mut value = 0;
some_closure(&value)

Function pointers and closures

A function pointer is kind of like a closure that has no environment. As
such, you can pass a function pointer to any function expecting a closure
argument, and it will work:

fn call with one(some closure: &Fn(i32) -> i32) -> i32 {
some_closure(1l)

}

fn add one(i: i32) -> i32 {
i+ 1

}

let £ = add _one;
let answer = call_with_one(&f);

assert eq!(2, answer);

In this example, we don’t strictly need the intermediate variable £, the name
of the function works just fine too:

let answer = call with one(&add _one);

Returning closures

It’s very common for functional-style code to return closures in various
situations. If you try to return a closure, you may run into an error. At first,
it may seem strange, but we’ll figure it out. Here’s how you’d probably try
to return a closure from a function:

fn factory() -> (Fn(i32) -> i32) {
let num = 5;

|x| x + num

}
let £ = factory();

let answer = f(1);
assert eq!(6, answer);

This gives us these long, related errors:

error: the trait bound “core::ops::Fn(i32) -> i32 : core::marker::Sized” is not
satisf

L ied [E0277]

fn factory() -> (Fn(i32) -> i32) {

note: “core::ops::Fn(i32) -> i32" does not have a constant size known at compile-
time
fn factory() -> (Fn(i32) -> i32) {

error: the trait bound “core::ops::Fn(i32) -> i32 : core::marker::Sized” is not
satisf

L ied [E0277]

let £ = factory();

note: “core::ops::Fn(i32) -> i32" does not have a constant size known at compile-
time
let £ = factory();

In order to return something from a function, Rust needs to know what size
the return type is. But since Fn is a trait, it could be various things of
various sizes: many different types can implement Fn. An easy way to give
something a size is to take a reference to it, as references have a known
size. So we’d write this:

fn factory() -> &(Fn(i32) -> i32) {
let num = 5;

|x| x + num

}

let £ = factory();

let answer = f(1);
assert eq!(6, answer);

But we get another error:

error: missing lifetime specifier [E0106]
fn factory() -> &(Fn(i32) -> i32) {

Right. Because we have a reference, we need to give it a lifetime. But our
factory() function takes no arguments, so elision doesn’t kick in here.
Then what choices do we have? Try 'static:

fn factory() -> &'static (Fn(i32) -> i32) {
let num = 5;

|x| x + num

}

let £ = factory();

let answer = f(1);
assert eq!(6, answer);

But we get another error:

error: mismatched types:
expected ~&'static core::ops::Fn(i32) -> i327,
found " [closure@<anon>:7:9: 7:20]"
(expected &-ptr,
found closure) [E0308]
|x| x + num

This error is letting us know that we don’t have a &'static Fn(i32) ->
i32, we have a [closure@<anon>:7:9: 7:20]. Wait, what?

Because each closure generates its own environment struct and
implementation of Fn and friends, these types are anonymous. They exist
solely for this closure. So Rust shows them as closure@<anon>, rather than
some autogenerated name.

The error also points out that the return type is expected to be a reference,
but what we are trying to return is not. Further, we cannot directly assign a

'static lifetime to an object. So we’ll take a different approach and return
a ‘trait object’ by Boxing up the Fn. This almost works:

fn factory() -> Box<Fn(i32) -> 132> {
let num = 5;

Box::new(|x| x + num)

}
let £ = factory();

let answer = f(1);
assert eq!(6, answer);

There’s just one last problem:

error: closure may outlive the current function, but it borrows “num”,
which is owned by the current function [E0373]
Box::new(|x| x + num)

Well, as we discussed before, closures borrow their environment. And in
this case, our environment is based on a stack-allocated 5, the num variable
binding. So the borrow has a lifetime of the stack frame. So if we returned
this closure, the function call would be over, the stack frame would go
away, and our closure is capturing an environment of garbage memory!
With one last fix, we can make this work:

fn factory() -> Box<Fn(i32) -> i32> {
let num = 5;

Box::new(move |x| x + num)

}
fn main() {
let £ = factory();

let answer = f(1);
assert _eqg!(6, answer);

}

By making the inner closure a move Fn, we create a new stack frame for our
closure. By Boxing it up, we’ve given it a known size, allowing it to escape
our stack frame.

Universal Function Call Syntax

Sometimes, functions can have the same names. Consider this code:

trait Foo {
fn f(&self);

}

trait Bar {
fn f(&self);

}
struct Baz;

impl Foo for Baz {
fn f(&self) { println!("Baz'’'s impl of Foo"); }
}

impl Bar for Baz {
fn f(&self) { printin!("Baz's impl of Bar"); }

}

let b = Baz;

If we were to try to call b. £(), we’d get an error:

error: multiple applicable methods in scope [E0034]
b.f();

note: candidate #1 is defined in an impl of the trait "main::Foo~ for the type
“main::Baz"
fn f(&self) { println!("Baz’s impl of Foo"); }

note: candidate #2 is defined in an impl of the trait "main::Bar~ for the type
“main::Baz"
fn f(&self) { println!("Baz’s impl of Bar"); }

We need a way to disambiguate which method we need. This feature is
called ‘universal function call syntax’, and it looks like this:

Foo::f(&b);
Bar::f(&b);

Let’s break it down.

Foo::
Bars::

These halves of the invocation are the types of the two traits: Foo and Bar.
This is what ends up actually doing the disambiguation between the two:
Rust calls the one from the trait name you use.

£(&b)

When we call a method like b.f() using method syntax, Rust will
automatically borrow b if £() takes sself. In this case, Rust will not, and
so we need to pass an explicit &b.

Angle-bracket Form

The form of UFCS we just talked about:

Trait::method(args);

Is a short-hand. There’s an expanded form of this that’s needed in some
situations:

<Type as Trait>::method(args);

The <>:: syntax is a means of providing a type hint. The type goes inside
the <>s. In this case, the type is Type as Trait, indicating that we want
Trait’s version of method to be called here. The as Trait part is optional
if it’s not ambiguous. Same with the angle brackets, hence the shorter form.

Here’s an example of using the longer form.

trait Foo {
fn foo() -> 1i32;
}

struct Bar;

impl Bar {
fn foo() -> i32 {
20
}
}

impl Foo for Bar {
fn foo() -> i32 {
10
}
}

fn main() {
assert eqg!(10, <Bar as Foo>::foo());
assert eq! (20, Bar::foo());

Using the angle bracket syntax lets you call the trait method instead of the
inherent one.

Crates and Modules

When a project starts getting large, it’s considered good software
engineering practice to split it up into a bunch of smaller pieces, and then fit
them together. It is also important to have a well-defined interface, so that
some of your functionality is private, and some is public. To facilitate these
kinds of things, Rust has a module system.

Basic terminology: Crates and Modules

Rust has two distinct terms that relate to the module system: ‘crate’ and
‘module’. A crate is synonymous with a ‘library’ or ‘package’ in other
languages. Hence “Cargo” as the name of Rust’s package management tool:
you ship your crates to others with Cargo. Crates can produce an executable
or a library, depending on the project.

Each crate has an implicit root module that contains the code for that crate.
You can then define a tree of sub-modules under that root module. Modules
allow you to partition your code within the crate itself.

As an example, let’s make a phrases crate, which will give us various
phrases in different languages. To keep things simple, we’ll stick to
‘greetings’ and ‘farewells’ as two kinds of phrases, and use English and
Japanese (H ZA<EE) as two languages for those phrases to be in. We’ll use
this module layout:

Fommm - +
+---| greetings |
e + | Fomm e +
+---| english |---+
| Fmmm + | Fmm e +
| +---| farewells |
. + | Fomm e +
| phrases |---+
Fomm + | Fmm e +
| +---| greetings |
| . + Fomm e +

+---| japanese |--+

In this example, phrases is the name of our crate. All of the rest are
modules. You can see that they form a tree, branching out from the crate
root, which is the root of the tree: phrases itself.

Now that we have a plan, let’s define these modules in code. To start,
generate a new crate with Cargo:

$ cargo new phrases
$ cd phrases

If you remember, this generates a simple project for us:

$ tree .

t:: Cargo.toml
src

L— 1ib.rs

1 directory, 2 files

src/lib.rs is our crate root, corresponding to the phrases in our diagram
above.

Defining Modules

To define each of our modules, we use the mod keyword. Let’s make our
src/lib.rs look like this:

mod english {
mod greetings {

}

mod farewells {

}
}

mod japanese {
mod greetings {

}

mod farewells {

}

After the mod keyword, you give the name of the module. Module names
follow the conventions for other Rust identifiers: lower snake case. The
contents of each module are within curly braces ({}).

Within a given mod, you can declare sub-mods. We can refer to sub-modules
with double-colon (::) notation: our four nested modules are
english::greetings, english::farewells, japanese::greetings, and
japanese::farewells. Because these sub-modules are namespaced under
their parent module, the names don’t conflict: english::greetings and
japanese::greetings are distinct, even though their names are both

greetings.

Because this crate does not have a main() function, and is called 1ib.rs,
Cargo will build this crate as a library:

$ cargo build

Compiling phrases v0.0.1 (file:///home/you/projects/phrases)
$ 1ls target/debug
build deps examples libphrases-a7448e02a0468eaa.rlib native

libphrases-<hash>.rlib is the compiled crate. Before we see how to use
this crate from another crate, let’s break it up into multiple files.

Multiple File Crates

If each crate were just one file, these files would get very large. It’s often
easier to split up crates into multiple files, and Rust supports this in two
ways.

Instead of declaring a module like this:

mod english {
// contents of our module go here

}

We can instead declare our module like this:

mod english;

If we do that, Rust will expect to find either a english.rs file, or a
english/mod.rs file with the contents of our module.

Note that in these files, you don’t need to re-declare the module: that’s
already been done with the initial mod declaration.

Using these two techniques, we can break up our crate into two directories
and seven files:

$ tree .

—— Cargo.lock

—— Cargo.toml

—— src

—— english

— farewells.rs

— greetings.rs

— mod.rs

—— japanese

— farewells.rs

— greetings.rs

— mod.rs

— lib.rs

— target

L— debug

build
deps
examples
libphrases-a7448e02a0468eaa.rlib
native

src/lib.rs 1S our crate root, and looks like this:

mod english;
mod japanese;

These two declarations tell Rust to look for either src/english.rs and
src/japanese.rs, Or src/english/mod.rs and src/japanese/mod.rs,
depending on our preference. In this case, because our modules have sub-
modules, we’ve chosen the second. Both src/english/mod.rs and
src/japanese/mod.rs look like this:

mod greetings;
mod farewells;

Again, these declarations tell Rust to look for either
src/english/greetings.rs, src/english/farewells.rs,
src/japanese/greetings.rs and src/japanese/farewells.rs or
src/english/greetings/mod.rs, src/english/farewells/mod.rs,
src/japanese/greetings/mod.rs and src/japanese/farewells/mod.rs.
Because these sub-modules don’t have their own sub-modules, we’ve
chosen to make them src/english/greetings.rs,
src/english/farewells.rs, src/japanese/greetings.rs and

src/japanese/farewells.rs. Whew!

The contents of src/english/greetings.rs, src/english/farewells.rs,
src/japanese/greetings.rs and src/japanese/farewells.rs are all
empty at the moment. Let’s add some functions.

Put this in src/english/greetings.rs:

fn hello() -> String {
"Hello!".to_string()

}

Put this in src/english/farewells.rs:

fn goodbye() -> String {
"Goodbye.".to_string()
}

Put this in src/japanese/greetings.rs:

fn hello() -> String {
"ZAICEE" . to_string()

}

Of course, you can copy and paste this from this web page, or type
something else. It’s not important that you actually put ‘konnichiwa’ to
learn about the module system.

Put this in src/japanese/farewells.rs:

fn goodbye() -> String {
"ELD/E5" . to_string()
}

(This 1s ‘Sayonara’, if you’re curious.)

Now that we have some functionality in our crate, let’s try to use it from
another crate.

Importing External Crates

We have a library crate. Let’s make an executable crate that imports and
uses our library.

Make a src/main.rs and put this in it (it won’t quite compile yet):

extern crate phrases;

fn main() {
println!("Hello in English: {}", phrases::english::greetings::hello());
println!("Goodbye in English: {}", phrases::english::farewells::goodbye());

println!("Hello in Japanese: {}", phrases::japanese::greetings::hello());
println!("Goodbye in Japanese: {}", phrases::japanese::farewells::goodbye());

The extern crate declaration tells Rust that we need to compile and link
to the phrases crate. We can then use phrases’ modules in this one. As we
mentioned earlier, you can use double colons to refer to sub-modules and
the functions inside of them.

(Note: when importing a crate that has dashes in its name “like-this”, which
is not a valid Rust identifier, it will be converted by changing the dashes to
underscores, so you would write extern crate like this;.)

Also, Cargo assumes that src/main.rs is the crate root of a binary crate,
rather than a library crate. Our package now has two crates: src/lib.rs
and src/main.rs. This pattern is quite common for executable crates: most
functionality is in a library crate, and the executable crate uses that library.
This way, other programs can also use the library crate, and it’s also a nice
separation of concerns.

This doesn’t quite work yet, though. We get four errors that look similar to
this:

$ cargo build
Compiling phrases v0.0.1 (file:///home/you/projects/phrases)
src/main.rs:4:38: 4:72 error: function "“hello is private
src/main.rs:4 println! ("Hello in English: {}", phrases::english::greetings::hellc

L));

note: in expansion of format_ args!

<std macros>:2:25: 2:58 note: expansion site

<std macros>:1:1: 2:62 note: in expansion of print!
<std macros>:3:1: 3:54 note: expansion site

<std macros>:1:1: 3:58 note: in expansion of println!
phrases/src/main.rs:4:5: 4:76 note: expansion site

By default, everything is private in Rust. Let’s talk about this in some more
depth.

Exporting a Public Interface

Rust allows you to precisely control which aspects of your interface are
public, and so private is the default. To make things public, you use the pub
keyword. Let’s focus on the english module first, so let’s reduce our
src/main.rs to only this:

extern crate phrases;

fn main() {
println!("Hello in English: {}", phrases::english::greetings::hello());
println!("Goodbye in English: {}", phrases::english::farewells::goodbye());

In our src/1ib.rs, let’s add pub to the english module declaration:

pub mod english;
mod Jjapanese;

And in our src/english/mod.rs, let’s make both pub:

pub mod greetings;
pub mod farewells;

In our src/english/greetings.rs, let’s add pub to our £n declaration:

pub fn hello() -> String {
"Hello!".to_string()

}

And also in src/english/farewells.rs:

pub fn goodbye() -> String {
"Goodbye.".to_string()
}

Now, our crate compiles, albeit with warnings about not using the japanese
functions:

$ cargo run

Compiling phrases v0.0.1 (file:///home/you/projects/phrases)
src/japanese/greetings.rs:1:1: 3:2 warning: function is never used: ~hello , #[warn(c
L ad code)] on by default

[y

src/japanese/greetings.rs:1 fn hello() -> String {

src/japanese/greetings.rs:2 "ZAICEE" .to_string()

src/japanese/greetings.rs:3 }

src/japanese/farewells.rs:1:1: 3:2 warning: function is never used: "~ goodbye™ , #[warr

L dead code)] on by default
src/japanese/farewells.rs:1 fn goodbye() -> String {
src/japanese/farewells.rs:2 "ELD7E5" . to_string()
src/japanese/farewells.rs:3 }

Running ~ target/debug/phrases”
Hello in English: Hello!
Goodbye in English: Goodbye.

pub also applies to structs and their member fields. In keeping with Rust’s
tendency toward safety, simply making a struct public won’t automatically
make its members public: you must mark the fields individually with pub.

Now that our functions are public, we can use them. Great! However,
typing out phrases::english::greetings::hello() is very long and
repetitive. Rust has another keyword for importing names into the current
scope, so that you can refer to them with shorter names. Let’s talk about

use.

Importing Modules with use

Rust has a use keyword, which allows us to import names into our local
scope. Let’s change our src/main.rs to look like this:

extern crate phrases;

use phrases::english::greetings;
use phrases::english::farewells;

fn main() {
println!("Hello in English: {}", greetings::hello());
println!("Goodbye in English: {}", farewells::goodbye());

The two use lines import each module into the local scope, so we can refer
to the functions by a much shorter name. By convention, when importing
functions, it’s considered best practice to import the module, rather than the
function directly. In other words, you can do this:

extern crate phrases;

use phrases::english::greetings::hello;
use phrases::english::farewells::goodbye;

fn main() {
println!("Hello in English: {}", hello());
println!("Goodbye in English: {}", goodbye());

But it is not idiomatic. This is significantly more likely to introduce a
naming conflict. In our short program, it’s not a big deal, but as it grows, it
becomes a problem. If we have conflicting names, Rust will give a
compilation error. For example, if we made the japanese functions public,
and tried to do this:

extern crate phrases;

use phrases::english::greetings::hello;
use phrases::japanese::greetings::hello;

fn main() {
println!("Hello in English: {}", hello());
println!("Hello in Japanese: {}", hello());

Rust will give us a compile-time error:

Compiling phrases v0.0.1 (file:///home/you/projects/phrases)
src/main.rs:4:5: 4:40 error: a value named "hello™ has already been imported in this
m
L odule [E0252]
src/main.rs:4 use phrases::japanese::greetings::hello;
error: aborting due to previous error
Could not compile “phrases.

If we’re importing multiple names from the same module, we don’t have to
type it out twice. Instead of this:

use phrases::english::greetings;
use phrases::english::farewells;

We can use this shortcut:

use phrases::english::{greetings, farewells};
Re-exporting with pub use

You don’t only use use to shorten identifiers. You can also use it inside of
your crate to re-export a function inside another module. This allows you to
present an external interface that may not directly map to your internal code
organization.

Let’s look at an example. Modify your src/main.rs to read like this:

extern crate phrases;

use phrases::english::{greetings,farewells};
use phrases::japanese;

fn main() {
println!("Hello in English: {}", greetings::hello());
println!("Goodbye in English: {}", farewells::goodbye());

println!("Hello in Japanese: {}", japanese::hello());
println!("Goodbye in Japanese: {}", japanese::goodbye());

Then, modify your src/1ib.rs to make the japanese mod public:

pub mod english;
pub mod japanese;

Next, make the two functions public, first in src/japanese/greetings.rs:

pub fn hello() -> String {
"ZAICBEE" .to_string()
}

And then in src/japanese/farewells.rs:

pub fn goodbye() -> String {
"E& D75 " to_string()
}

Finally, modify your src/japanese/mod.rs to read like this:

pub use self::greetings::hello;
pub use self::farewells::goodbye;

mod greetings;
mod farewells;

The pub use declaration brings the function into scope at this part of our
module hierarchy. Because we’ve pub used this inside of our japanese
module, we now have a phrases::japanese::hello() function and a
phrases: :japanese: :goodbye () function, even though the code for them
lives in phrases::japanese::greetings::hello() and
phrases::japanese::farewells::goodbye(). Our internal organization
doesn’t define our external interface.

Here we have a pub use for each function we want to bring into the
japanese scope. We could alternatively use the wildcard syntax to include
everything from greetings into the current scope: pub use

self::greetings::*.

What about the se1£? Well, by default, use declarations are absolute paths,
starting from your crate root. self makes that path relative to your current
place in the hierarchy instead. There’s one more special form of use: you
can use super:: to reach one level up the tree from your current location.
Some people like to think of self as . and super as .., from many shells’
display for the current directory and the parent directory.

Outside of use, paths are relative: foo: :bar() refers to a function inside of
foo relative to where we are. If that’s prefixed with ::,as in : : foo::bar(),
it refers to a different foo, an absolute path from your crate root.

This will build and run:

$ cargo run
Compiling phrases v0.0.1 (file:///home/you/projects/phrases)
Running " target/debug/phrases”

Hello in English: Hello!
Goodbye in English: Goodbye.
Hello in Japanese: CAICHEI(E
Goodbye in Japanese: =& D7E5

Complex imports

Rust offers several advanced options that can add compactness and
convenience to your extern crate and use statements. Here is an example:

extern crate phrases as sayings;

use sayings::japanese::greetings as ja_greetings;
use sayings::japanese::farewells::*;
use sayings::english::{self, greetings as en_greetings, farewells as en_farewells};

fn main() {
println!("Hello in English; {}", en greetings::hello());
println!("And in Japanese: {}", ja greetings::hello());
println!("Goodbye in English: {}", english::farewells::goodbye());
printlin!("Again: {}", en farewells::goodbye());
println!("And in Japanese: {}", goodbye());

What’s going on here?

First, both extern crate and use allow renaming the thing that is being
imported. So the crate is still called “phrases”, but here we will refer to it as
“sayings”. Similarly, the first use statement pulls in the
japanese::greetings module from the crate, but makes it available as
ja_greetings as opposed to simply greetings. This can help to avoid
ambiguity when importing similarly-named items from different places.

The second use statement uses a star glob to bring in all public symbols
from the sayings::japanese::farewells module. As you can see we can
later refer to the Japanese goodbye function with no module qualifiers. This
kind of glob should be used sparingly. It’s worth noting that it only imports
the public symbols, even if the code doing the globbing is in the same
module.

The third use statement bears more explanation. It’s using “brace
expansion” globbing to compress three use statements into one (this sort of

syntax may be familiar if you’ve written Linux shell scripts before). The
uncompressed form of this statement would be:

use sayings::english;
use sayings::english::greetings as en_greetings;
use sayings::english::farewells as en_ farewells;

As you can see, the curly brackets compress use statements for several
items under the same path, and in this context self refers back to that path.
Note: The curly brackets cannot be nested or mixed with star globbing.

const and static

Rust has a way of defining constants with the const keyword:

const N: i32 = 5;
Unlike let bindings, you must annotate the type of a const.

Constants live for the entire lifetime of a program. More specifically,
constants in Rust have no fixed address in memory. This is because they’re
effectively inlined to each place that they’re used. References to the same
constant are not necessarily guaranteed to refer to the same memory address
for this reason.

static

Rust provides a ‘global variable’ sort of facility in static items. They’re
similar to constants, but static items aren’t inlined upon use. This means
that there is only one instance for each value, and it’s at a fixed location in
memory.

Here’s an example:

static N: i32 = 5;

Unlike let bindings, you must annotate the type of a static.

Statics live for the entire lifetime of a program, and therefore any reference
stored in a constant has a 'static lifetime:

static NAME: & 'static str = "Steve";

Mutability

You can introduce mutability with the mut keyword:

static mut N: i32 = 5;

Because this is mutable, one thread could be updating N while another is
reading it, causing memory unsafety. As such both accessing and mutating a
static mut 1S unsafe, and so must be done in an unsafe block:

unsafe {
N += 1;

println!("N: {}", N);
}

Furthermore, any type stored in a static must be sync, and must not have a
Drop implementation.

Initializing

Both const and static have requirements for giving them a value. They
must be given a value that’s a constant expression. In other words, you
cannot use the result of a function call or anything similarly complex or at
runtime.

Which construct should I use?

Almost always, if you can choose between the two, choose const. It’s
pretty rare that you actually want a memory location associated with your
constant, and using a const allows for optimizations like constant
propagation not only in your crate but downstream crates.

Attributes

Declarations can be annotated with ‘attributes’ in Rust. They look like this:

test

or like this:

test

The difference between the two is the !, which changes what the attribute
applies to:

foo
struct Foo;

mod bar {
bar

}

The #[foo] attribute applies to the next item, which is the struct
declaration. The #! [bar] attribute applies to the item enclosing it, which is
the mod declaration. Otherwise, they’re the same. Both change the meaning
of the item they’re attached to somehow.

For example, consider a function like this:

test
fn check() {
assert _eq!(2, 1 + 1);

}

It is marked with #[test]. This means it’s special: when you run tests, this
function will execute. When you compile as usual, it won’t even be
included. This function is now a test function.

Attributes may also have additional data:

inline(always
fn super fast fn() {

Or even keys and values:

cfg(target os "macos"
mod macos_only {

Rust attributes are used for a number of different things. There is a full list
of attributes in the reference. Currently, you are not allowed to create your
own attributes, the Rust compiler defines them.

type aliases

The type keyword lets you declare an alias of another type:

type Name = String;

You can then use this type as if it were a real type:

type Name = String;

let x: Name = "Hello".to_string();

Note, however, that this is an alias, not a new type entirely. In other words,
because Rust is strongly typed, you’d expect a comparison between two
different types to fail:

let x: 132
let y: i64

5;
5;

if x ==y {
7Y ococ
}

this gives

error: mismatched types:
expected "i327,

found “i64°
(expected i32,

found i64) [E0308]

if x ==y {

But, if we had an alias:

type Num = i32;

let x: i32
let y: Num

http://doc.rust-lang.org/reference.html#attributes

if x ==y {
77 ococ
}

This compiles without error. Values of a Num type are the same as a value of
type 132, in every way. You can use [tuple struct] to really get a new type.

You can also use type aliases with generics:

use std::result;

enum ConcreteError {
Foo,
Bar,

}

type Result<T> = result::Result<T, ConcreteError>;

This creates a specialized version of the Result type, which always has a
ConcreteError for the E part of Result<T, E>. This is commonly used in
the standard library to create custom errors for each subsection. For
example, i0::Result.

Casting between types

Rust, with its focus on safety, provides two different ways of casting
different types between each other. The first, as, is for safe casts. In
contrast, transmute allows for arbitrary casting, and is one of the most
dangerous features of Rust!

Coercion

Coercion between types is implicit and has no syntax of its own, but can be
spelled out with as.

Coercion occurs in let, const, and static statements; in function call
arguments; in field values in struct initialization; and in a function result.

http://doc.rust-lang.org/std/io/type.Result.html

The most common case of coercion is removing mutability from a
reference:

¢ gmut T tO &T
An analogous conversion is to remove mutability from a raw pointer:
® *mut T tO *const T
References can also be coerced to raw pointers:
® §T 1O *const T
® gmut TtO *mut T
Custom coercions may be defined using Deref.

Coercion 18 transitive.
as

The as keyword does safe casting:

let x: i32 = 5;

let y = x as 164;

There are three major categories of safe cast: explicit coercions, casts
between numeric types, and pointer casts.

Casting is not transitive: even if e as Ul as U2 is a valid expression, e as
U2 is not necessarily so (in fact it will only be valid if u1l coerces to u2).

Explicit coercions
A caste as uis valid if e has type T and T coerces to u.

Numeric casts

file:///private/var/folders/j5/_0bnx0jd7sx7j0gy_jnqj_bw0000gn/C/calibre_5.10.1_tmp_ytnjsotx/q4z7cpj2_pdf_out/EPUB/text/raw-pointers.md
file:///private/var/folders/j5/_0bnx0jd7sx7j0gy_jnqj_bw0000gn/C/calibre_5.10.1_tmp_ytnjsotx/q4z7cpj2_pdf_out/EPUB/text/deref-coercions.md

A caste as uis also valid in any of the following cases:

e e has type T and T and u are any numeric types; numeric-cast

e e is a C-like enum (with no data attached to the variants), and U is an
integer type; enum-cast

e e has type bool or char and U is an integer type; prim-int-cast

e e has type u8 and U is char; u8-char-cast

For example

let one = true as u8;
let at_sign = 64 as char;
let two_hundred = -56i8 as u8;

The semantics of numeric casts are:

e Casting between two integers of the same size (e.g. 132 ->u32) is a no-
op

e Casting from a larger integer to a smaller integer (e.g. u32 -> u8) will
truncate

e Casting from a smaller integer to a larger integer (e.g. u8 -> u32) will

o zero-extend if the source is unsigned

o sign-extend if the source is signed

e Casting from a float to an integer will round the float towards zero

o NOTE: currently this will cause Undefined Behavior if the
rounded value cannot be represented by the target integer
type. This includes Inf and NaN. This is a bug and will be fixed.

e Casting from an integer to float will produce the floating point
representation of the integer, rounded if necessary (rounding strategy
unspecified)

e Casting from an {32 to an f64 is perfect and lossless

e Casting from an f64 to an f32 will produce the closest possible value
(rounding strategy unspecified)

o NOTE: currently this will cause Undefined Behavior if the
value is finite but larger or smaller than the largest or
smallest finite value representable by £f32. This is a bug and will
be fixed.

https://github.com/rust-lang/rust/issues/10184
https://github.com/rust-lang/rust/issues/15536

Pointer casts

Perhaps surprisingly, it is safe to cast raw pointers to and from integers, and
to cast between pointers to different types subject to some constraints. It is
only unsafe to dereference the pointer:

let a
let b

300 as *const char; // a pointer to location 300
a as u32;

e as U is a valid pointer cast in any of the following cases:

e has type *t, u has type =*u 0, and either U 0: Sized or
unsize kind(T) == unsize kind(U_0); a pir-pir-cast

* e has type *T and u is a numeric type, while T: sized; ptr-addr-cast
* eisaninteger and uis *u_0, while u_0: sized; addr-ptr-cast
e ehastype &«[T; n] and U 1S *const T; array-ptr-cast

* e is a function pointer type and u has type *T, while T: sized; fptr-ptr-
cast

e e is a function pointer type and u is an integer; fptr-addr-cast
transmute

as only allows safe casting, and will for example reject an attempt to cast
four bytes into a u32:

let a [Ou8, Ou8, 0u8, 0u8];

let b = a as u32; // four u8s makes a u32

This errors with:

error: non-scalar cast: “[u8; 4] as “u32"
let b = a as u32; // four u8s makes a u32

file:///private/var/folders/j5/_0bnx0jd7sx7j0gy_jnqj_bw0000gn/C/calibre_5.10.1_tmp_ytnjsotx/q4z7cpj2_pdf_out/EPUB/text/raw-pointers.md

This is a ‘non-scalar cast’ because we have multiple values here: the four
elements of the array. These kinds of casts are very dangerous, because they
make assumptions about the way that multiple underlying structures are
implemented. For this, we need something more dangerous.

The transmute function is provided by a compiler intrinsic, and what it
does is very simple, but very scary. It tells Rust to treat a value of one type
as though it were another type. It does this regardless of the typechecking
system, and completely trusts you.

In our previous example, we know that an array of four uss represents a u32
properly, and so we want to do the cast. Using transmute instead of as,
Rust lets us:

use std::mem;

fn main() {

unsafe {
let a = [0u8, 1u8, 0u8, 0u8];
let b = mem::transmute::<[u8; 4], u32>(a);

println!("{}", b); // 256

// or, more concisely:

let c: u32 = mem::transmute(a);
println!("{}", c); // 256

}

We have to wrap the operation in an unsafe block for this to compile
successfully. Technically, only the mem: : transmute call itself needs to be in
the block, but it’s nice in this case to enclose everything related, so you
know where to look. In this case, the details about a are also important, and
so they’re in the block. You’ll see code in either style, sometimes the
context is too far away, and wrapping all of the code in unsafe isn’t a great
idea.

While transmute does very little checking, it will at least make sure that the
types are the same size. This errors:

use std::mem;

unsafe {
let a = [Ou8, 0Ou8, 0u8, 0u8];

let b = mem::transmute::<[u8; 4], u64>(a);

}
with:

error: transmute called with differently sized types: [u8; 4] (32 bits) to u64
(64 bits)

Other than that, you’re on your own!

Associated Types

Associated types are a powerful part of Rust’s type system. They’re related
to the idea of a ‘type family’, in other words, grouping multiple types
together. That description is a bit abstract, so let’s dive right into an
example. If you want to write a Graph trait, you have two types to be
generic over: the node type and the edge type. So you might write a trait,
Graph<N, E>,that looks like this:

trait Graph<N, E> {
fn has edge(&self, &N, &N) -> bool;
fn edges(&self, &N) -> Vec<E>;
// etc

}

While this sort of works, it ends up being awkward. For example, any
function that wants to take a Graph as a parameter now also needs to be
generic over the node and edge types too:

fn distance<N, E, G: Graph<N, E>>(graph: &G, start: &N, end: &N) -> u32 { ... }

Our distance calculation works regardless of our Edge type, so the stuff in
this signature is a distraction.

What we really want to say is that a certain Edge and nNode type come
together to form each kind of craph. We can do that with associated types:

trait Graph {
type N;
type E;

fn has edge(&self, &Self::N, &Self::N) -> bool;
fn edges(&self, &Self::N) -> Vec<Self::E>;

// etc

Now, our clients can be abstract over a given Graph:

fn distance<G: Graph>(graph: &G, start: &G::N, end: &G::N) -> u32 { ... }
No need to deal with the edge type here!

Let’s go over all this in more detail.
Defining associated types

Let’s build that crapnh trait. Here’s the definition:

trait Graph {
type N;
type E;

fn has _edge(&self, &Self::N, &Self::N) -> bool;
fn edges(&self, &Self::N) -> Vec<Self::E>;

Simple enough. Associated types use the type keyword, and go inside the
body of the trait, with the functions.

These type declarations can have all the same thing as functions do. For
example, if we wanted our N type to implement Display, SO we can print
the nodes out, we could do this:

use std::fmt;

trait Graph {
type N: fmt::Display;
type E;

fn has_edge(&self, &Self::N, &Self::N) -> bool;
fn edges(&self, &Self::N) -> Vec<Self::E>;

Implementing associated types

Just like any trait, traits that use associated types use the impl keyword to
provide implementations. Here’s a simple implementation of Graph:

struct Node;
struct Edge;
struct MyGraph;

impl Graph for MyGraph {
type N Node;
type E Edge;

fn has_edge(&self, nl: &Node, n2: &Node) -> bool {
true

}

fn edges(&self, n: &Node) -> Vec<Edge> {
Vec: :new()
}
}

This silly implementation always returns true and an empty vec<Edge>, but
it gives you an idea of how to implement this kind of thing. We first need
three structs, one for the graph, one for the node, and one for the edge. If
it made more sense to use a different type, that would work as well, we’re
going to use structs for all three here.

Next is the imp1 line, which is an implementation like any other trait.

From here, we use = to define our associated types. The name the trait uses
goes on the left of the =, and the concrete type we’re implementing this for
goes on the right. Finally, we use the concrete types in our function
declarations.

Trait objects with associated types

There’s one more bit of syntax we should talk about: trait objects. If you try
to create a trait object from a trait with an associated type, like this:

let graph = MyGraph;
let obj = Box::new(graph) as Box<Graph>;

You’ll get two errors:

error: the value of the associated type "E° (from the trait "main::Graph”) must
be specified [E0191]
let obj = Box::new(graph) as Box<Graph>;

24:44 error: the value of the associated type "N~ (from the trait
"main::Graph”~) must be specified [E0191]
let obj = Box::new(graph) as Box<Graph>;

We can’t create a trait object like this, because we don’t know the
associated types. Instead, we can write this:

let graph = MyGraph;
let obj = Box::new(graph) as Box<Graph<N=Node, E=Edge>>;

The N=Node syntax allows us to provide a concrete type, Node, for the n type
parameter. Same with E=Edge. If we didn’t provide this constraint, we
couldn’t be sure which imp1 to match this trait object to.

Unsized Types

Most types have a particular size, in bytes, that is knowable at compile
time. For example, an i32 is thirty-two bits big, or four bytes. However,
there are some types which are useful to express, but do not have a defined
size. These are called ‘unsized’ or ‘dynamically sized’ types. One example
is [T]. This type represents a certain number of T in sequence. But we don’t
know how many there are, so the size is not known.

Rust understands a few of these types, but they have some restrictions.
There are three:

1. We can only manipulate an instance of an unsized type via a pointer.
An &[T] works fine, but a [T] does not.

2. Variables and arguments cannot have dynamically sized types.

3. Only the last field in a struct may have a dynamically sized type; the
other fields must not. Enum variants must not have dynamically sized
types as data.

So why bother? Well, because [T] can only be used behind a pointer, if we
didn’t have language support for unsized types, it would be impossible to
write this:

impl Foo for str {

or

impl<T> Foo for [T] {

Instead, you would have to write:

impl Foo for &str {

Meaning, this implementation would only work for references, and not
other types of pointers. With the impl for str, all pointers, including (at
some point, there are some bugs to fix first) user-defined custom smart
pointers, can use this impl.

?Sized

If you want to write a function that accepts a dynamically sized type, you
can use the special bound syntax, ?sized:

struct Foo<T: ?Sized> {
f: T,
}

This ?sized, read as “T may or may not be sized”, which allows us to
match both sized and unsized types. All generic type parameters implicitly
have the sized bound, so the ?sized can be used to opt-out of the implicit
bound.

Operators and Overloading

Rust allows for a limited form of operator overloading. There are certain
operators that are able to be overloaded. To support a particular operator
between types, there’s a specific trait that you can implement, which then
overloads the operator.

For example, the + operator can be overloaded with the add trait:

use std::ops::Add;

derive (Debug
struct Point {
x: 132,
y: i32,
}

impl Add for Point {
type Output = Point;

fn add(self, other: Point) -> Point {
Point { x: self.x + other.x, y: self.y + other.y }
}
}

fn main() {

let pl = Point { x: 1, y: 0 };
let p2 = Point { x: 2, y: 3 };
let p3 = pl + p2;

printin!("{:?}", p3);

In main, we can use + on our two Points, since we’ve implemented
Add<oOutput=Point> for Point.

There are a number of operators that can be overloaded this way, and all of
their associated traits live in the std::ops module. Check out its
documentation for the full list.

Implementing these traits follows a pattern. Let’s look at add in more detail:

pub trait Add<RHS = Self> {
type Output;

fn add(self, rhs: RHS) -> Self::0Output;

There’s three types in total involved here: the type you impl add for, rHS,
which defaults to self, and output. For an expression let z = x + y, x IS
the self type, y is the RHS, and z is the self::0output type.

impl Add<i32> for Point {
type Output = £64;

http://doc.rust-lang.org/std/ops/index.html
http://doc.rust-lang.org/std/ops/trait.Add.html

fn add(self, rhs: i32) -> f64 {
// add an i32 to a Point and get an f64
}

will let you do this:

7Y oo

let p: Point c
+ 2i32;

let x: f64 = ;
Using operator traits in generic structs

Now that we know how operator traits are defined, we can define our
HasArea trait and square struct from the traits chapter more generically:

use std::ops::Mul;

trait HasArea<T> {
fn area(&self) -> T;

}

struct Square<T> {
x: T,
y: T,
side: T,

}

impl<T> HasArea<T> for Square<T>
where T: Mul<Output=T> + Copy {
fn area(&self) -> T {
self.side * self.side
}
}

fn main() {
let s = Square {
x: 0.0f64,
y: 0.0f64,
side: 12.0f64,

}i

println!("Area of s: {}", s.area());

For HasArea and square, we declare a type parameter T and replace £64
with it. The impl needs more involved modifications:

impl<T> HasArea<T> for Square<T>
where T: Mul<Output=T> + Copy { ... }

The area method requires that we can multiply the sides, so we declare that
type T must implement std::ops::Mul. Like add, mentioned above, Mul
itself takes an output parameter: since we know that numbers don’t change
type when multiplied, we also set it to T. T must also support copying, so
Rust doesn’t try to move self.side into the return value.

Deref coercions

The standard library provides a special trait, Deref. It’s normally used to
overload *, the dereference operator:

use std::ops::Deref;

struct DerefExample<T> {
value: T,

}

impl<T> Deref for DerefExample<T> {
type Target = T;

fn deref (&self) -> &T {
&self.value

}
}

fn main() {
let x = DerefExample { value: 'a' };
assert_eq!('a', *x);

This is useful for writing custom pointer types. However, there’s a language
feature related to peref: ‘deref coercions’. Here’s the rule: If you have a
type u, and it implements Deref<Target=T>, values of &u will automatically
coerce to a &T. Here’s an example:

fn foo(s: &str) {
// borrow a string for a second

}

// String implements Deref<Target=str>
let owned = "Hello".to_string();

// therefore, this works:
foo(&owned);

http://doc.rust-lang.org/std/ops/trait.Deref.html

Using an ampersand in front of a value takes a reference to it. SO owned is a
String, &owned 1S an &String, and since impl Deref<Target=str> for
String, &String will deref to &str, which foo() takes.

That’s it. This rule is one of the only places in which Rust does an
automatic conversion for you, but it adds a lot of flexibility. For example,
the Re<T> type implements Deref<Target=T>, so this works:

use std::rc::Rc;

fn foo(s: &str) {
// borrow a string for a second

}

// String implements Deref<Target=str>
let owned = "Hello".to_string();
let counted = Rc::new(owned);

// therefore, this works:
foo(&counted);

All we’ve done is wrap our String in an Re<T>. But we can now pass the
Re<String> around anywhere we’d have a string. The signature of foo
didn’t change, but works just as well with either type. This example has two
conversions: Re<String> to String and then string to &str. Rust will do
this as many times as possible until the types match.

Another very common implementation provided by the standard library is:

fn foo(s: & 132]) {
// borrow a slice for a second

}

// Vec<T> implements Deref<Target=[T]>
let owned = vec![1, 2, 3];

foo(&owned);

Vectors can Deref to a slice.

Deref and method calls

peref will also kick in when calling a method. Consider the following
example.

struct Foo;

impl Foo {
fn foo(&self) { println!("Foo"); }
}

let £ = &&Fo00;

f.foo();

Even though £ is a s&Foo and foo takes sself, this works. That’s because
these things are the same:

f.foo();
(&f).foo();
(&&f).foo();
(&&&&&&&&F) . f00O();

A value of type ssssssssssssasssa&Foo can still have methods defined on
Foo called, because the compiler will insert as many * operations as
necessary to get it right. And since it’s inserting *s, that uses Deref.

Macros

By now you’ve learned about many of the tools Rust provides for
abstracting and reusing code. These units of code reuse have a rich semantic
structure. For example, functions have a type signature, type parameters
have trait bounds, and overloaded functions must belong to a particular
trait.

This structure means that Rust’s core abstractions have powerful compile-
time correctness checking. But this comes at the price of reduced flexibility.
If you visually identify a pattern of repeated code, you may find it’s difficult
or cumbersome to express that pattern as a generic function, a trait, or
anything else within Rust’s semantics.

Macros allow us to abstract at a syntactic level. A macro invocation is
shorthand for an “expanded” syntactic form. This expansion happens early

in compilation, before any static checking. As a result, macros can capture
many patterns of code reuse that Rust’s core abstractions cannot.

The drawback 1s that macro-based code can be harder to understand,
because fewer of the built-in rules apply. Like an ordinary function, a well-
behaved macro can be used without understanding its implementation.
However, it can be difficult to design a well-behaved macro! Additionally,
compiler errors in macro code are harder to interpret, because they describe
problems in the expanded code, not the source-level form that developers
use.

These drawbacks make macros something of a “feature of last resort”.
That’s not to say that macros are bad; they are part of Rust because
sometimes they’re needed for truly concise, well-abstracted code. Just keep
this tradeoff in mind.

Defining a macro

You may have seen the vec! macro, used to initialize a yvector with any
number of elements.

let x: Vec<u32> = vec![1l, 2, 3];

This can’t be an ordinary function, because it takes any number of
arguments. But we can imagine it as syntactic shorthand for

let x: Vec<u32> = {
let mut temp vec = Vec::new();
temp vec.push(1l);
temp vec.push(2);
temp vec.push(3);
temp vec

b
We can implement this shorthand, using a macro: 1

macro_rules! vec {
($($x:expr),*) => {
{

let mut temp vec = Vec::new();
$(

temp vec.push($x);

)*
temp vec
}
}i
}

Whoa, that’s a lot of new syntax! Let’s break it down.

macro_rules! vec { ... }

This says we’re defining a macro named vec, much as £n vec would define
a function named vec. In prose, we informally write a macro’s name with
an exclamation point, e.g. vec!. The exclamation point is part of the
invocation syntax and serves to distinguish a macro from an ordinary
function.

Matching

The macro is defined through a series of rules, which are pattern-matching
cases. Above, we had

($($x:expr),*) =>{ ... };

This is like a match expression arm, but the matching happens on Rust
syntax trees, at compile time. The semicolon is optional on the last (here,
only) case. The “pattern” on the left-hand side of => is known as a
‘matcher’. These have [their own little grammar] within the language.

The matcher $x:expr will match any Rust expression, binding that syntax
tree to the ‘metavariable’ $x. The identifier expr is a ‘fragment specifier’;
the full possibilities are enumerated later in this chapter. Surrounding the
matcher with $(...),* will match zero or more expressions, separated by
commas.

Aside from the special matcher syntax, any Rust tokens that appear in a
matcher must match exactly. For example,

macro_rules! foo {
(x => Se:expr) => (println!("mode X: {}", S$Se));
(y => Se:expr) => (println!("mode Y: {}", S$Se));

fn main() {
fool(y => 3);
}

will print

mode Y: 3

With

foo!(z => 3);

we get the compiler error

error: no rules expected the token ~z°

Expansion

The right-hand side of a macro rule is ordinary Rust syntax, for the most
part. But we can splice in bits of syntax captured by the matcher. From the
original example:

$(

temp vec.push($x);

)*

Each matched expression $x will produce a single push statement in the
macro expansion. The repetition in the expansion proceeds in “lockstep”
with repetition in the matcher (more on this in a moment).

Because $x was already declared as matching an expression, we don’t
repeat :expr on the right-hand side. Also, we don’t include a separating
comma as part of the repetition operator. Instead, we have a terminating
semicolon within the repeated block.

Another detail: the vec! macro has fwo pairs of braces on the right-hand
side. They are often combined like so:

macro_rules! foo {

O = {

3}
}

The outer braces are part of the syntax of macro rules!. In fact, you can
use () or [] instead. They simply delimit the right-hand side as a whole.

The inner braces are part of the expanded syntax. Remember, the vec!
macro is used in an expression context. To write an expression with
multiple statements, including 1et-bindings, we use a block. If your macro
expands to a single expression, you don’t need this extra layer of braces.

Note that we never declared that the macro produces an expression. In fact,
this is not determined until we use the macro as an expression. With care,
you can write a macro whose expansion works in several contexts. For
example, shorthand for a data type could be valid as either an expression or
a pattern.

Repetition

The repetition operator follows two principal rules:

1.s(...)* walks through one “layer” of repetitions, for all of the $names
it contains, in lockstep, and

2.each $name must be under at least as many $(...)*s as it was matched
against. If it 1s under more, it’ll be duplicated, as appropriate.

This baroque macro illustrates the duplication of variables from outer
repetition levels.

macro_rules! o_O {
(
$(
$x:expr; [$($y:expr), * |
)i*
) =>{
& S(S($x + Sy),*),*]
}
}

fn main() {
let a: & i32]
= o0 0!(10; [1, 2, 3];

20; [4, 5, 6]);

assert eq!(a, [11, 12, 13, 24, 25, 26]);

That’s most of the matcher syntax. These examples use $(...)*, which is a
“zero or more” match. Alternatively you can write $(...)+ for a “one or
more” match. Both forms optionally include a separator, which can be any
token except + or *.

This system is based on “Macro-by-Example” (PDF link).
Hygiene

Some languages implement macros using simple text substitution, which
leads to various problems. For example, this C program prints 13 instead of
the expected 25.

#define FIVE TIMES(x) 5 * x

int main() {
printf("%d\n", FIVE TIMES(2 + 3));
return 0;

}

After expansion we have 5 * 2 + 3, and multiplication has greater
precedence than addition. If you’ve used C macros a lot, you probably
know the standard idioms for avoiding this problem, as well as five or six
others. In Rust, we don’t have to worry about it.

macro_rules! five times {
($x:expr) => (5 * $x);
}

fn main() {
assert _eq! (25, five times!(2 + 3));

}

The metavariable $x is parsed as a single expression node, and keeps its
place in the syntax tree even after substitution.

Another common problem in macro systems is ‘variable capture’. Here’s a
C macro, using [a GNU C extension] to emulate Rust’s expression blocks.

https://www.cs.indiana.edu/ftp/techreports/TR206.pdf

#define LOG(msg) ({ \
int state = get_log_state(); \
if (state > 0) { \
printf("log(%d): %s\n", state, msg); \
PN\
3]

Here’s a simple use case that goes terribly wrong:

const char *state = "reticulating splines";
LOG(state)

This expands to

const char *state = "reticulating splines”;

{
int state = get_log state();

if (state > 0) {
printf("log(%d): %s\n", state, state);
}

The second variable named state shadows the first one. This is a problem
because the print statement should refer to both of them.

The equivalent Rust macro has the desired behavior.

macro_rules! log {
($msg:expr) => {{
let state: i32 = get_log state();
if state > 0 {
println!("log({}): {}", state, $msg);
}
}}i
}

fn main() {
let state: &str = "reticulating splines";
log!(state);

This works because Rust has a [hygienic macro system]. Each macro
expansion happens in a distinct ‘syntax context’, and each variable is
tagged with the syntax context where it was introduced. It’s as though the
variable state inside main is painted a different “color” from the variable
state inside the macro, and therefore they don’t conflict.

This also restricts the ability of macros to introduce new bindings at the
invocation site. Code such as the following will not work:

macro_rules! foo {
() => (let x

3:):
}

fn main() {
foo!l();
printin!("{}", x);

Instead you need to pass the variable name into the invocation, so that it’s
tagged with the right syntax context.

macro_rules! foo {
($v:ident) => (let $v = 3;);
}

fn main() {
foo!(x);
println!("{}", x);

This holds for let bindings and loop labels, but not for items. So the
following code does compile:

macro _rules! foo {
() => (fn x() { });
}

fn main() {
foo!();
x()7

Recursive macros

A macro’s expansion can include more macro invocations, including
invocations of the very same macro being expanded. These recursive
macros are useful for processing tree-structured input, as illustrated by this
(simplistic) HTML shorthand:

macro_rules! write html {
($wiexpr,) => (());

(Sw:expr, Se:tt) => (write!/($w, "{}", $e));

http://doc.rust-lang.org/reference.html#items

(Sw:expr, S$tag:ident [$($inner:tt)*] $(Srest:tt)*) => {{
write!($w, "<{}>", stringify!($tag));
write html!($w, $($inner)¥*);
write!(Sw, "</{}>", stringify!($tag));
write html!($w, $($rest)*);
}}i
}

fn main() {
use std::fmt::Write;
let mut out = String::new();

write html!(&mut out,
html[
head[title["Macros guide"]]
body[hl["Macros are the best!"]]
1)

assert _eq!(out,
"<html><head><title>Macros guide</title></head>\
<body><hl>Macros are the best!</hl></body></html>");

Debugging macro code

To see the results of expanding macros, run rustc --pretty expanded.
The output represents a whole crate, so you can also feed it back in to
rustc, which will sometimes produce better error messages than the
original compilation. Note that the --pretty expanded output may have a
different meaning if multiple variables of the same name (but different
syntax contexts) are in play in the same scope. In this case --pretty
expanded, hygiene will tell you about the syntax contexts.

rustc provides two syntax extensions that help with macro debugging. For
now, they are unstable and require feature gates.

® log syntax!(...) will print its arguments to standard output, at
compile time, and “expand” to nothing.

* trace macros! (true) will enable a compiler message every time a
macro is expanded. Use trace macros! (false) later in expansion to
turn it off.

Syntactic requirements

Even when Rust code contains un-expanded macros, it can be parsed as a
full syntax tree. This property can be very useful for editors and other tools
that process code. It also has a few consequences for the design of Rust’s
macro system.

One consequence is that Rust must determine, when it parses a macro
invocation, whether the macro stands in for

e 7ero or more items,

e zero or more methods,
® an expression,

e a statement, or

* a pattern.

A macro invocation within a block could stand for some items, or for an
expression / statement. Rust uses a simple rule to resolve this ambiguity. A
macro invocation that stands for items must be either

e delimited by curly braces, e.g. foo! { ... },or
e terminated by a semicolon, e.g. foo! (...);

Another consequence of pre-expansion parsing is that the macro invocation
must consist of valid Rust tokens. Furthermore, parentheses, brackets, and
braces must be balanced within a macro invocation. For example, foo! ([)
is forbidden. This allows Rust to know where the macro invocation ends.

More formally, the macro invocation body must be a sequence of ‘token
trees’. A token tree is defined recursively as either

e a sequence of token trees surrounded by matching (), [1, 0or {}, or
e any other single token.

Within a matcher, each metavariable has a ‘fragment specifier’, identifying
which syntactic form it matches.

e ident: an identifier. Examples: x; foo.

e path: a qualified name. Example: T: : speciala.

* expr: an expression. Examples: 2 + 2; if true { 1 } else { 2 };
£(42).

e ty:atype. Examples: 132; Vec<(char, String)>; &T.

e pat: a pattern. Examples: some(t); (17, 'a'); _

e stmt: a single statement. Example: let x = 3.

* block: a brace-delimited sequence of statements and optionally an
ex;messkleExanqﬂe:{ log(error, "hi"); return 12; }.

e item: an item. Examples: fn foo() { }; struct Bar;.

* meta: a “meta item”, as found in attributes. Example: cfg(target os
= "windows").

e tt: a single token tree.

There are additional rules regarding the next token after a metavariable:

e expr and stmt variables may only be followed by one of: => , ;

e ty and path variables may only be followed by one of: => , = | ;
> [{ as where

* pat variables may only be followed by one of: => , = | if in

e Other variables may be followed by any token.

These rules provide some flexibility for Rust’s syntax to evolve without
breaking existing macros.

The macro system does not deal with parse ambiguity at all. For example,
the grammar $($i:ident)* $e:expr will always fail to parse, because the
parser would be forced to choose between parsing $i and parsing S$e.
Changing the invocation syntax to put a distinctive token in front can solve
the problem. In this case, you can write $(I $i:ident)* E S$e:expr.

Scoping and macro import/export

Macros are expanded at an early stage in compilation, before name
resolution. One downside is that scoping works differently for macros,
compared to other constructs in the language.

http://doc.rust-lang.org/reference.html#items

Definition and expansion of macros both happen in a single depth-first,
lexical-order traversal of a crate’s source. So a macro defined at module
scope is visible to any subsequent code in the same module, which includes
the body of any subsequent child mod items.

A macro defined within the body of a single £n, or anywhere else not at
module scope, is visible only within that item.

If a module has the macro use attribute, its macros are also visible in its
parent module after the child’s mod item. If the parent also has macro use
then the macros will be visible in the grandparent after the parent’s mod
item, and so forth.

The macro_use attribute can also appear on extern crate. In this context it
controls which macros are loaded from the external crate, e.g.

macro_use(foo, bar
extern crate baz;

If the attribute is given simply as #[macro _use], all macros are loaded. If
there is no #[macro_use] attribute then no macros are loaded. Only macros
defined with the #[macro_export] attribute may be loaded.

To load a crate’s macros without linking it into the output, use #[no_ link]
as well.

An example:

macro _rules! ml { () => (()) }
// visible here: ml

mod foo {
// visible here: ml

macro_export
macro_rules! m2 { () => (()) }

// visible here: ml, m2

}

// visible here: ml

macro rules! m3 { () => (()) }
// visible here: ml, m3

macro_use
mod bar {
// visible here: ml, m3

macro_rules! m4d { () => (()) }

// visible here: ml, m3, m4

}

// visible here: ml, m3, m4

When this library is loaded with #[macro use] extern crate, only m2 will
be imported.

The Rust Reference has a listing of macro-related attributes.

The variable $crate

A further difficulty occurs when a macro is used in multiple crates. Say that
mylib defines

pub fn increment(x: u32) -> u32 {
x + 1

}

macro_export
macro_rules! inc_a {
($x:expr) => (::increment($x))

}

macro_export
macro_rules! inc_b {
($x:expr) => (::mylib::increment($x))

}

inc_a only works within mylib, while inc_b only works outside the library.
Furthermore, inc_b will break if the user imports mylib under another
name.

Rust does not (yet) have a hygiene system for crate references, but it does
provide a simple workaround for this problem. Within a macro imported
from a crate named foo, the special macro variable $crate will expand to

http://doc.rust-lang.org/reference.html#macro-related-attributes

: : foo. By contrast, when a macro is defined and then used in the same
crate, scrate will expand to nothing. This means we can write

macro_export
macro rules! inc {
($x:expr) => ($crate::increment($x))

}

to define a single macro that works both inside and outside our library. The
function name will expand to either : : increment Or : :mylib::increment.

To keep this system simple and correct, #[macro use] extern crate
may only appear at the root of your crate, not inside mod.

The deep end

The introductory chapter mentioned recursive macros, but it did not give
the full story. Recursive macros are useful for another reason: Each
recursive invocation gives you another opportunity to pattern-match the
macro’s arguments.

As an extreme example, it is possible, though hardly advisable, to
implement the Bitwise Cyclic Tag automaton within Rust’s macro system.

macro_rules! bct {
// emd 0: d ... => ...
(0, $(Sps:tt),* ; $_d:tt)
=> (bct!($(S$ps),*, 0 ;));
(0, $S(S$ps:tt),* ; $_d:tt, $(Sds:tt),*)
=> (bct!($(Sps),*, 0 ; $($ds),*));

// emd 1p: 1 ... =>1 ... p
(1, $p:tt, $($ps:tt),* ; 1)
=> (bct!($(Sps),*, 1, $p ; 1, $p));
(1, $p:tt, $(Sps:tt),* ; 1, $(Sds:tt),*)
=> (th-’($($PS)r*r 1, $P 7 1, $($ds)l*l $P))7

// emd 1Ip: 0 ... => 0 ...
(1, $p:tt, $(Sps:tt),* ; $($ds:tt),*)
=> (bct!($(Sps),*, 1, Sp ; $($ds),*));

// halt on empty data string
($(Sps:tt),* ;)
=> ()7

https://esolangs.org/wiki/Bitwise_Cyclic_Tag

Exercise: use macros to reduce duplication in the above definition of the
bct ! macro.

Common macros

Here are some common macros you’ll see in Rust code.
panic!
This macro causes the current thread to panic. You can give it a message to

panic with:

panic!("oh no!");
vec!
The vec! macro is used throughout the book, so you’ve probably seen it

already. It creates vec<T>s with ease:

let v = vec![1, 2, 3, 4, 5];

It also lets you make vectors with repeating values. For example, a hundred
Zeroes:

let v = vec![0; 100];
assert! and assert_eq!

These two macros are used in tests. assert! takes a boolean. assert_eq!

takes two values and checks them for equality. true passes, false panic!s.
Like this:

// A-ok!

assert!(true);
assert _eq!(5, 3 + 2);

// nope :(

assert!(5 < 3);
assert_eq!(5, 3);

try!

try! is used for error handling. It takes something that can return a
Result<T, E>, and gives T if it’s a ok<T>, and returns with the Err () if
it’s that. Like this:

use std::fs::File;

fn foo() -> std::io::Result<()> {
let £ = try!(File::create("foo.txt"));

Ok (())

This is cleaner than doing this:

use std::fs::File;

fn foo() -> std::io::Result<()> {
let £ = File::create("foo.txt");

let £ = match f {
ok(t) => t,
Err(e) => return Err(e),

}i

Ok(())

unreachable!

This macro is used when you think some code should never execute:

if false {
unreachable!();

}

Sometimes, the compiler may make you have a different branch that you
know will never, ever run. In these cases, use this macro, so that if you end
up wrong, you’ll get a panic! about it.

let x: Option<i32> = None;

match x {

Some(_) => unreachable!(),

None => println!("I know x is None!"),
}
unimplemented!

The unimplemented! macro can be used when you’re trying to get your
functions to typecheck, and don’t want to worry about writing out the body
of the function. One example of this situation is implementing a trait with
multiple required methods, where you want to tackle one at a time. Define
the others as unimplemented! until you’re ready to write them.

Procedural macros

If Rust’s macro system can’t do what you need, you may want to write a
compiler plugin instead. Compared to macro_rules! macros, this is
significantly more work, the interfaces are much less stable, and bugs can
be much harder to track down. In exchange you get the flexibility of
running arbitrary Rust code within the compiler. Syntax extension plugins
are sometimes called ‘procedural macros’ for this reason.

Raw Pointers

Rust has a number of different smart pointer types in its standard library,
but there are two types that are extra-special. Much of Rust’s safety comes
from compile-time checks, but raw pointers don’t have such guarantees, and
are unsafe to use.

*const T and *mut T are called ‘raw pointers’ in Rust. Sometimes, when
writing certain kinds of libraries, you’ll need to get around Rust’s safety
guarantees for some reason. In this case, you can use raw pointers to
implement your library, while exposing a safe interface for your users. For
example, * pointers are allowed to alias, allowing them to be used to write

shared-ownership types, and even thread-safe shared memory types (the
Re<T> and Arc<T> types are both implemented entirely in Rust).

Here are some things to remember about raw pointers that are different than
other pointer types. They:

e are not guaranteed to point to valid memory and are not even
guaranteed to be non-NULL (unlike both Box and &);

e do not have any automatic clean-up, unlike Box, and so require manual
resource management;

e are plain-old-data, that is, they don’t move ownership, again unlike
Box, hence the Rust compiler cannot protect against bugs like use-
after-free;

e lack any form of lifetimes, unlike &, and so the compiler cannot reason
about dangling pointers; and

e have no guarantees about aliasing or mutability other than mutation
not being allowed directly through a *const T.

Basics

Creating a raw pointer is perfectly safe:

let x = 5;

let raw &X as *const i32;

let mut y = 10;
let raw_mut = &mut y as *mut i32;

However, dereferencing one is not. This won’t work:

let x = 5;

let raw &X as *const 1i32;

println!("raw points at {}", *raw);

It gives this error:

error: dereference of raw pointer requires unsafe function or block [E0133]
println! ("raw points at {}", *raw);

When you dereference a raw pointer, you’re taking responsibility that it’s
not pointing somewhere that would be incorrect. As such, you need unsafe:

let x = 5;

let raw &X as *const i32;

let points_at = unsafe { *raw };

println!("raw points at {}", points_at);

For more operations on raw pointers, see their API documentation.
FFI1

Raw pointers are useful for FFI: Rust’s *const T and *mut T are similar to
C’s const T* and T+, respectively. For more about this use, consult the FFI
chapter.

References and raw pointers

At runtime, a raw pointer * and a reference pointing to the same piece of
data have an identical representation. In fact, an &T reference will implicitly
coerce to an *const T raw pointer in safe code and similarly for the mut
variants (both coercions can be performed explicitly with, respectively,
value as *const T and value as *mut T).

Going the opposite direction, from *const to a reference &, is not safe. A &T
i1s always valid, and so, at a minimum, the raw pointer *const T has to
point to a valid instance of type T. Furthermore, the resulting pointer must
satisfy the aliasing and mutability laws of references. The compiler assumes
these properties are true for any references, no matter how they are created,
and so any conversion from raw pointers is asserting that they hold. The
programmer must guarantee this.

The recommended method for the conversion is:

// explicit cast
let i: u32 = 1;
let p imm: *const u32 = &i as *const u32;

http://doc.rust-lang.org/std/primitive.pointer.html

// implicit coercion
let mut m: u32 = 2;
let p mut: *mut u32 = smut m;

unsafe {
let ref_imm: &u32 = &*p_imm;
let ref mut: &mut u32 = &mut *p mut;

The s*x dereferencing style is preferred to using a transmute. The latter is
far more powerful than necessary, and the more restricted operation is
harder to use incorrectly; for example, it requires that x is a pointer (unlike

transmute).

unsafe

Rust’s main draw is its powerful static guarantees about behavior. But
safety checks are conservative by nature: there are some programs that are
actually safe, but the compiler is not able to verify this is true. To write
these kinds of programs, we need to tell the compiler to relax its restrictions
a bit. For this, Rust has a keyword, unsafe. Code using unsafe has fewer
restrictions than normal code does.

Let’s go over the syntax, and then we’ll talk semantics. unsafe is used in
four contexts. The first one is to mark a function as unsafe:

unsafe fn danger will robinson() {
// scary stuff

}

All functions called from FFI must be marked as unsafe, for example. The
second use of unsafe 1s an unsafe block:

unsafe {
// scary stuff
}

The third 1s for unsafe traits:

unsafe trait Scary { }

And the fourth is for implementing one of those traits:

unsafe impl Scary for i32 {}

It’s important to be able to explicitly delineate code that may have bugs that
cause big problems. If a Rust program segfaults, you can be sure the cause
is related to something marked unsafe.

What does ‘safe’ mean?

Safe, in the context of Rust, means ‘doesn’t do anything unsafe’. It’s also
important to know that there are certain behaviors that are probably not
desirable in your code, but are expressly not unsafe:

Deadlocks

Leaks of memory or other resources
Exiting without calling destructors
Integer overflow

Rust cannot prevent all kinds of software problems. Buggy code can and
will be written in Rust. These things aren’t great, but they don’t qualify as
unsafe specifically.

In addition, the following are all undefined behaviors in Rust, and must be
avoided, even when writing unsafe code:

e Data races

e Dereferencing a NULL/dangling raw pointer

e Reads of undef (uninitialized) memory

e Breaking the pointer aliasing rules with raw pointers.

e smut T and &T follow LLVM’s scoped noalias model, except if the &T
contains an UnsafeCell<u>. Unsafe code must not violate these
aliasing guarantees.

e Mutating an immutable value/reference without unsafecell<u>

e Invoking undefined behavior via compiler intrinsics:

o Indexing outside of the bounds of an object with
std::ptr::offset (offset intrinsic), with the exception of one
byte past the end which is permitted.

http://llvm.org/docs/LangRef.html#undefined-values
http://llvm.org/docs/LangRef.html#pointer-aliasing-rules
http://llvm.org/docs/LangRef.html#noalias

o Using std::ptr::copy nonoverlapping memory
(memcpy32/memcpy64 intrinsics) on overlapping buffers
 Invalid values in primitive types, even in private fields/locals:
NULL/dangling references or boxes
A value other than false (0) or true (1) in a bool
A discriminant in an enum not included in its type definition
A value in a char which is a surrogate or above char: : MAX
o Non-UTF-8 byte sequences in a str
e Unwinding into Rust from foreign code or unwinding from Rust into
foreign code.

o}

o}

o

o}

Unsafe Superpowers

In both unsafe functions and unsafe blocks, Rust will let you do three things
that you normally can not do. Just three. Here they are:

1. Access or update a static mutable variable.
2. Dereference a raw pointer.
3. Call unsafe functions. This is the most powerful ability.

That’s it. It’s important that unsafe does not, for example, ‘turn off the
borrow checker’. Adding unsafe to some random Rust code doesn’t change
its semantics, it won’t start accepting anything. But it will let you write
things that do break some of the rules.

You will also encounter the unsafe keyword when writing bindings to
foreign (non-Rust) interfaces. You’re encouraged to write a safe, native
Rust interface around the methods provided by the library.

Let’s go over the basic three abilities listed, in order.
Access or update a static mut

Rust has a feature called ‘static mut’ which allows for mutable global
state. Doing so can cause a data race, and as such is inherently not safe. For
more details, see the static section of the book.

Dereference a raw pointer

Raw pointers let you do arbitrary pointer arithmetic, and can cause a
number of different memory safety and security issues. In some senses, the
ability to dereference an arbitrary pointer is one of the most dangerous
things you can do. For more on raw pointers, see their section of the book.

Call unsafe functions

This last ability works with both aspects of unsafe: you can only call
functions marked unsafe from inside an unsafe block.

This ability is powerful and varied. Rust exposes some compiler intrinsics
as unsafe functions, and some unsafe functions bypass safety checks,
trading safety for speed.

I’1l repeat again: even though you can do arbitrary things in unsafe blocks
and functions doesn’t mean you should. The compiler will act as though
you’re upholding its invariants, so be careful!

1. The actual definition of vec! in libcollections differs from the one
presented here, for reasons of efficiency and reusability. €

Effective Rust

So you’ve learned how to write some Rust code. But there’s a difference
between writing any Rust code and writing good Rust code.

This chapter consists of relatively independent tutorials which show you
how to take your Rust to the next level. Common patterns and standard
library features will be introduced. Read these sections in any order of your
choosing.

The Stack and the Heap

As a systems language, Rust operates at a low level. If you’re coming from
a high-level language, there are some aspects of systems programming that
you may not be familiar with. The most important one is how memory
works, with a stack and a heap. If you’re familiar with how C-like
languages use stack allocation, this chapter will be a refresher. If you’re not,
you’ll learn about this more general concept, but with a Rust-y focus.

As with most things, when learning about them, we’ll use a simplified
model to start. This lets you get a handle on the basics, without getting
bogged down with details which are, for now, irrelevant. The examples
we’ll use aren’t 100% accurate, but are representative for the level we’re
trying to learn at right now. Once you have the basics down, learning more
about how allocators are implemented, virtual memory, and other advanced
topics will reveal the leaks in this particular abstraction.

Memory management

These two terms are about memory management. The stack and the heap
are abstractions that help you determine when to allocate and deallocate
memory.

Here’s a high-level comparison:

The stack is very fast, and is where memory is allocated in Rust by default.
But the allocation is local to a function call, and is limited in size. The heap,
on the other hand, is slower, and is explicitly allocated by your program.
But it’s effectively unlimited in size, and is globally accessible. Note this
meaning of heap, which allocates arbitrary-sized blocks of memory in
arbitrary order, is quite different from the heap data structure.

The Stack

Let’s talk about this Rust program:

fn main() {
let x = 42;
}

This program has one variable binding, x. This memory needs to be
allocated from somewhere. Rust ‘stack allocates’ by default, which means
that basic values ‘go on the stack’. What does that mean?

Well, when a function gets called, some memory gets allocated for all of its
local variables and some other information. This is called a ‘stack frame’,
and for the purpose of this tutorial, we’re going to ignore the extra
information and only consider the local variables we’re allocating. So in
this case, when main() 1s run, we’ll allocate a single 32-bit integer for our
stack frame. This is automatically handled for you, as you can see; we
didn’t have to write any special Rust code or anything.

When the function exits, its stack frame gets deallocated. This happens
automatically as well.

That’s all there is for this simple program. The key thing to understand here
is that stack allocation is very, very fast. Since we know all the local
variables we have ahead of time, we can grab the memory all at once. And
since we’ll throw them all away at the same time as well, we can get rid of
it very fast too.

The downside is that we can’t keep values around if we need them for
longer than a single function. We also haven’t talked about what the word,

‘stack’, means. To do that, we need a slightly more complicated example:

fn foo() {
let y
let z

I n
(S2]

100;
}

fn main() {
let x

42;

foo();
}

This program has three variables total: two in foo(), one in main(). Just as
before, when main() is called, a single integer is allocated for its stack
frame. But before we can show what happens when foo() is called, we
need to visualize what’s going on with memory. Your operating system
presents a view of memory to your program that’s pretty simple: a huge list
of addresses, from O to a large number, representing how much RAM your
computer has. For example, if you have a gigabyte of RAM, your addresses
go from 0 to 1,073,741,823. That number comes from 230 the number of
bytes in a gigabyte. 1

This memory is kind of like a giant array: addresses start at zero and go up
to the final number. So here’s a diagram of our first stack frame:

Address Name Value
0 X 42

We’ve got x located at address 0, with the value 42.

When foo () is called, a new stack frame is allocated:

Address Name Value
2 zZ 100
1 y 5

0 X 4?2

Because 0 was taken by the first frame, 1 and 2 are used for foo()’s stack
frame. It grows upward, the more functions we call.

There are some important things we have to take note of here. The numbers
0, 1, and 2 are all solely for illustrative purposes, and bear no relationship to
the address values the computer will use in reality. In particular, the series
of addresses are in reality going to be separated by some number of bytes
that separate each address, and that separation may even exceed the size of
the value being stored.

After foo () is over, its frame is deallocated:

Address Name Value
0 X 42

And then, after main (), even this last value goes away. Easy!

It’s called a ‘stack’ because it works like a stack of dinner plates: the first
plate you put down is the last plate to pick back up. Stacks are sometimes
called ‘last in, first out queues’ for this reason, as the last value you put on
the stack is the first one you retrieve from it.

Let’s try a three-deep example:

fn italic() {
let i = 6;
}

fn bold()
let a
let b
let c

o n =

italic();

}

fn main() {
let x = 42;

bold();

We have some kooky function names to make the diagrams clearer.

Okays, first, we call main():

Address Name Value
0 X 42

Next up, main() calls bold():

Address Name Value
3 c 1

2 b 100

1 a 5

0 X 42

And then bold() calls italic():

Address Name Value
4 i 6

3 c 1

2 b 100

1 a 5

0 X 42

Whew! Our stack is growing tall.

After italic() 1s over, its frame is deallocated, leaving only bold() and

main():

Address Name Value
3 c 1

2 b 100

1 a 5

0 X 42

And then bold () ends, leaving only main():

Address Name Value
0 X 42

And then we’re done. Getting the hang of it? It’s like piling up dishes: you
add to the top, you take away from the top.

The Heap

Now, this works pretty well, but not everything can work like this.
Sometimes, you need to pass some memory between different functions, or
keep it alive for longer than a single function’s execution. For this, we can
use the heap.

In Rust, you can allocate memory on the heap with the Box<T>_type. Here’s
an example:

fn main() {
let x = Box::new(5);
let y = 42;

}

Here’s what happens in memory when main () is called:

Address Name Value
1 y 42
0 X 777777

We allocate space for two variables on the stack. y is 42, as it always has
been, but what about x? Well, x is a Box<i32>, and boxes allocate memory
on the heap. The actual value of the box is a structure which has a pointer to
‘the heap’. When we start executing the function, and Box: :new() is called,
it allocates some memory for the heap, and puts 5 there. The memory now
looks like this:

Address Name Value

http://doc.rust-lang.org/std/boxed/index.html

Address Name Value

(239 - 1 5
1 y 42
0 X — (239 -1

We have (2°Y) - 1 addresses in our hypothetical computer with 1GB of
RAM. And since our stack grows from zero, the easiest place to allocate
memory is from the other end. So our first value is at the highest place in
memory. And the value of the struct at x has a raw_pointer to the place
we’ve allocated on the heap, so the value of x is (230) - 1, the memory
location we’ve asked for.

We haven’t really talked too much about what it actually means to allocate
and deallocate memory in these contexts. Getting into very deep detail is
out of the scope of this tutorial, but what’s important to point out here is
that the heap isn’t a stack that grows from the opposite end. We’ll have an
example of this later in the book, but because the heap can be allocated and
freed in any order, it can end up with ‘holes’. Here’s a diagram of the
memory layout of a program which has been running for a while now:

Address Name Value
(239 -1 5

(230) -2

(299 -3

(230) - 4 42

2 z — (239 -4
1 y 42

0 X — (230) - 1

In this case, we’ve allocated four things on the heap, but deallocated two of
them. There’s a gap between (239 - 1 and (239) - 4 which isn’t currently

being used. The specific details of how and why this happens depends on
what kind of strategy you use to manage the heap. Different programs can
use different ‘memory allocators’, which are libraries that manage this for
you. Rust programs use jemalloc for this purpose.

Anyway, back to our example. Since this memory is on the heap, it can stay
alive longer than the function which allocates the box. In this case,
however, it doesn’t.2 When the function is over, we need to free the stack
frame for main(). Box<T>, though, has a trick up its sleeve: Drop. The
implementation of prop for Box deallocates the memory that was allocated
when it was created. Great! So when x goes away, it first frees the memory
allocated on the heap:

Address Name Value
1 y 42
0 X 277777

And then the stack frame goes away, freeing all of our memory.

Arguments and borrowing

We’ve got some basic examples with the stack and the heap going, but what
about function arguments and borrowing? Here’s a small Rust program:

fn foo(i: &i32) {
let z = 42;
}

let x

fn main() {
let y =

&X;

foo(y);
}

When we enter main (), memory looks like this:

Address Name Value
1 y — 0

http://www.canonware.com/jemalloc/

Address Name Value
0 X 5

x 1s a plain old 5, and y is a reference to x. So its value is the memory
location that x lives at, which in this case is o.

What about when we call foo (), passing y as an argument?

Address Name Value
3 z 42

2 i — 0

1 y — 0
0 X 5

Stack frames aren’t only for local bindings, they’re for arguments too. So in
this case, we need to have both i, our argument, and z, our local variable
binding. i is a copy of the argument, y. Since y’s value is 0,s01s i’s.

This is one reason why borrowing a variable doesn’t deallocate any
memory: the value of a reference is a pointer to a memory location. If we
got rid of the underlying memory, things wouldn’t work very well.

A complex example

Okay, let’s go through this complex program step-by-step:

fn foo(x: &i32) {
let y = 10;
let z = &y;

baz(z);

bar(x, z);

}

fn bar(a: &i32, b: &i32) {
let ¢ = 5;
let d = Box::new(5);
let e = &d;

baz(e);

}

fn baz(f: &i32) {
let g = 100;
}

fn main() {

let h 3;

let i = Box::new(20);
let j = &h;
foo(3J);

}

First, we call main():

Address Name Value
(230) -1 20

2 j — (0

1 i — (239 -1
0 h 3

We allocate memory for j, i, and h. i is on the heap, and so has a value
pointing there.

Next, at the end of main(), foo() gets called:

Address Name Value
(230) - 1 20

5 zZ — 4

4 y 10

3 X —(

2] — 0

1 i — (239 -1
0 h 3

Space gets allocated for x, y, and z. The argument x has the same value as
j, since that’s what we passed it in. It’s a pointer to the 0 address, since 3
points at h.

Next, foo() calls baz (), passing z:

Address Name Value
(239 - 1 20

7 g 100

6 f — 4

5 y4 — 4

4 y 10

3 X — 0

2] — 0

1 i — (230 -1
0 h 3

We’ve allocated memory for £ and g. baz() is very short, so when it’s over,
we get rid of its stack frame:

Address Name Value
(230) -1 20

5 z — 4

4 y 10

3 X — 0

2] — 0

1 i — (230 -1
0 h 3

Next, foo() calls bar () with x and z:

Address Name Value

(239 - 1 20

(239 -2 5

10 e —9

9 d — (239 -2
8 C 5

7 b — 4

6 a — (0

5 z — 4

4 y 10

3 X — ()

2] — 0

1 i — (239 -1
0 h 3

We end up allocating another value on the heap, and so we have to subtract

one from (230) - 1. It’s easier to write that than 1,073,741,822. In any case,
we set up the variables as usual.

At the end of bar (), i1t calls baz():

Address Name Value
(230) - 1 20

(239 -2 5

12 g 100

11 f — (239 -2
10 e — 9

9 d — (239 -2
8 C 5

Address Name Value

7 b — 4

6 a —(

5 y4 — 4

4 y 10

3 X — ()

2 j — 0

1 i — (230 -1
0 h 3

With this, we’re at our deepest point! Whew! Congrats for following along
this far.

After baz () is over, we get rid of £ and g:

Address Name Value
(230 - 1 20

(239 -2 5

10 e —9

9 d — (230 .2
8 C 5

7 b — 4

6 a — 0

5 y4 — 4

4 y 10

3 X —(

2] — 0

1 i — (230 -1
0 h 3

Next, we return from bar (). d in this case is a Box<T>, so it also frees what
it points to: (239 - 2.

Address Name Value
(239 -1 20

5 z — 4

4 y 10

3 X —0

2] — 0

1 i — (239 -1
0 h 3

And after that, foo() returns:

Address Name Value
(239 - 1 20

2 j — 0

1 i — (239 -1
0 h 3

And then, finally, main (), which cleans the rest up. When i is propped, it
will clean up the last of the heap too.

What do other languages do?

Most languages with a garbage collector heap-allocate by default. This
means that every value is boxed. There are a number of reasons why this is
done, but they’re out of scope for this tutorial. There are some possible
optimizations that don’t make it true 100% of the time, too. Rather than
relying on the stack and prop to clean up memory, the garbage collector
deals with the heap instead.

Which to use?

So if the stack is faster and easier to manage, why do we need the heap? A
big reason is that Stack-allocation alone means you only have ‘Last In First
Out (LIFO)’ semantics for reclaiming storage. Heap-allocation is strictly
more general, allowing storage to be taken from and returned to the pool in
arbitrary order, but at a complexity cost.

Generally, you should prefer stack allocation, and so, Rust stack-allocates
by default. The LIFO model of the stack is simpler, at a fundamental level.
This has two big impacts: runtime efficiency and semantic impact.

Runtime Efficiency

Managing the memory for the stack is trivial: The machine increments or
decrements a single value, the so-called “stack pointer”. Managing memory
for the heap is non-trivial: heap-allocated memory is freed at arbitrary
points, and each block of heap-allocated memory can be of arbitrary size, so
the memory manager must generally work much harder to identify memory
for reuse.

If you’d like to dive into this topic in greater detail, this paper is a great
introduction.

Semantic impact

Stack-allocation impacts the Rust language itself, and thus the developer’s
mental model. The LIFO semantics is what drives how the Rust language
handles automatic memory management. Even the deallocation of a
uniquely-owned heap-allocated box can be driven by the stack-based LIFO
semantics, as discussed throughout this chapter. The flexibility
(i.e. expressiveness) of non LIFO-semantics means that in general the
compiler cannot automatically infer at compile-time where memory should
be freed; it has to rely on dynamic protocols, potentially from outside the

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.4688

language itself, to drive deallocation (reference counting, as used by re<T>
and Arc<T>, is one example of this).

When taken to the extreme, the increased expressive power of heap
allocation comes at the cost of either significant runtime support (e.g. in the
form of a garbage collector) or significant programmer effort (in the form of
explicit memory management calls that require verification not provided by
the Rust compiler).

Testing

Program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.

Edsger W. Dijkstra, “The Humble Programmer” (1972)

Let’s talk about how to test Rust code. What we will not be talking about is
the right way to test Rust code. There are many schools of thought
regarding the right and wrong way to write tests. All of these approaches
use the same basic tools, and so we’ll show you the syntax for using them.

The test attribute

At its simplest, a test in Rust is a function that’s annotated with the test
attribute. Let’s make a new project with Cargo called adder:

$ cargo new adder
$ cd adder

Cargo will automatically generate a simple test when you make a new
project. Here’s the contents of src/1ib.rs:

test
fn it _works() {

}

Note the #[test]. This attribute indicates that this is a test function. It
currently has no body. That’s good enough to pass! We can run the tests

with cargo test:

$ cargo test
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test it works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured
Cargo compiled and ran our tests. There are two sets of output here: one for

the test we wrote, and another for documentation tests. We’ll talk about
those later. For now, see this line:

test it works ... ok

Note the it _works. This comes from the name of our function:

fn it works() {

We also get a summary line:

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

So why does our do-nothing test pass? Any test which doesn’t panic!
passes, and any test that does panic! fails. Let’s make our test fail:

test
fn it _works() {
assert!(false);

}

assert! 1S a macro provided by Rust which takes one argument: if the
argument 1s true, nothing happens. If the argument is false, it will panic!.
Let’s run our tests again:

$ cargo test
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test it works ... FAILED

failures:

---- it works stdout ----
thread 'it works' panicked at 'assertion failed: false', /home/steve/tmp/adde
L /src/lib.rs:3

failures:
it _works

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured

thread 'main' panicked at 'Some tests failed', /home/steve/src/rust/src/libtest/lib.r
L 2247

Rust indicates that our test failed:

test it_works ... FAILED
And that’s reflected in the summary line:

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured

We also get a non-zero status code. We can use $? on OS X and Linux:

$ echo §$?
101

On Windows, if you’re using cmd:
> echo %ERRORLEVELS%

And if you’re using PowerShell:

> echo SLASTEXITCODE # the code itself
> echo $? # a boolean, fail or succeed

This is useful if you want to integrate cargo test into other tooling.

We can invert our test’s failure with another attribute: should panic:

test
should panic
fn it works() {
assert!(false);

}

This test will now succeed if we panic! and fail if we complete. Let’s try it:

$ cargo test
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test it works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured
Rust provides another macro, assert_eq!, that compares two arguments for
equality:

test
should_panic
fn it works() {
assert_eq!("Hello", "world");

}

Does this test pass or fail? Because of the should_panic attribute, it passes:

$ cargo test
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test it works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

should panic tests can be fragile, as it’s hard to guarantee that the test
didn’t fail for an unexpected reason. To help with this, an optional expected
parameter can be added to the should panic attribute. The test harness will
make sure that the failure message contains the provided text. A safer
version of the example above would be:

test

should_ panic(expected "assertion failed"
fn it _works() {
assert eqg!("Hello", "world");

}

That’s all there is to the basics! Let’s write one ‘real’ test:

pub fn add two(a: i32) -> i32 {
a+ 2

}

test
fn it _works() {
assert eqg!(4, add_two(2));
}

This is a very common use of assert_eq!: call some function with some
known arguments and compare it to the expected output.

The ignore attribute

Sometimes a few specific tests can be very time-consuming to execute.
These can be disabled by default by using the ignore attribute:

test
fn it works() {
assert eq!(4, add_two(2));
}

test
ignore
fn expensive test() {
// code that takes an hour to run

}

Now we run our tests and see that it _works is run, but expensive test is
not:

$ cargo test
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 2 tests
test expensive test ... ignored
test it _works ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured
Doc-tests adder
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

The expensive tests can be run explicitly using cargo test -- --ignored:

$ cargo test -- --ignored
Running target/adder-91b3e234d4ed382a

running 1 test
test expensive test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

The --ignored argument is an argument to the test binary, and not to
Cargo, which 1s why the command is cargo test -- --ignored.

The tests module

There is one way in which our existing example is not idiomatic: it’s
missing the tests module. The idiomatic way of writing our example looks
like this:

pub fn add_two(a: i32) -> i32 {
a+ 2

}

cfg(test
mod tests {
use super::add two;

test
fn it works() {
assert eqg!(4, add_two(2));
}

There’s a few changes here. The first is the introduction of a mod tests
with a cfg attribute. The module allows us to group all of our tests together,
and to also define helper functions if needed, that don’t become a part of the
rest of our crate. The cfg attribute only compiles our test code if we’re
currently trying to run the tests. This can save compile time, and also
ensures that our tests are entirely left out of a normal build.

The second change is the use declaration. Because we’re in an inner
module, we need to bring our test function into scope. This can be annoying
if you have a large module, and so this is a common use of globs. Let’s
change our src/1lib.rs to make use of it:

pub fn add two(a: i32) -> i32 {
a+ 2

}

cfg(test
mod tests {
use super::*;

test
fn it _works() {

assert _eqg!(4, add_two(2));
}

Note the different use line. Now we run our tests:

$ cargo test
Updating registry ~https://github.com/rust-lang/crates.io-index”
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

It works!

The current convention is to use the tests module to hold your “unit-style”
tests. Anything that tests one small bit of functionality makes sense to go
here. But what about “integration-style” tests instead? For that, we have the
tests directory.

The tests directory

Each file in tests/*.rs directory is treated as individual crate. So, to write
an integration test, let’s make a tests directory, and put a
tests/integration_ test.rs file inside, with this as its contents:

extern crate adder;

test
fn it _works() {
assert _eq!(4, adder::add_two(2));
}

This looks similar to our previous tests, but slightly different. We now have
an extern crate adder at the top. This is because each test in the tests
directory is an entirely separate crate, and so we need to import our library.
This is also why tests is a suitable place to write integration-style tests:
they use the library like any other consumer of it would.

Let’s run them:

$ cargo test
Compiling adder v0.0.1 (file:///home/you/projects/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test tests::it _works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Running target/lib-c18e7d3494509e74

running 1 test
test it works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder
running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Now we have three sections: our previous test is also run, as well as our
new one.

Cargo will ignore files in subdirectories of the tests/ directory. Therefore
shared modules in integrations tests are possible. For example
tests/common/mod.rs 1S not separately compiled by cargo but can be
imported in every test with mod common;

That’s all there is to the tests directory. The tests module isn’t needed
here, since the whole thing is focused on tests.

Let’s finally check out that third section: documentation tests.
Documentation tests

Nothing is better than documentation with examples. Nothing is worse than
examples that don’t actually work, because the code has changed since the
documentation has been written. To this end, Rust supports automatically
running examples in your documentation (note: this only works in library
crates, not binary crates). Here’s a fleshed-out src/1ib.rs with examples:

//! The “adder” crate provides functions that add numbers to other numbers.
/7!

//! # Examples

/7!

V72

//! assert eq! (4, adder::add two(2));

/7 T

/// This function adds two to its argument.
/77

/// # Examples

/77

/77 70

/// use adder::add_two;

/77

/// assert eq! (4, add two(2));

/77 T

pub fn add_two(a: i32) -> i32 {
a+ 2

}

cfg(test
mod tests {
use super::*;

test
fn it works() {

assert eqg!(4, add_two(2));
}

Note the module-level documentation with //! and the function-level
documentation with ///. Rust’s documentation supports Markdown in
comments, and so triple graves mark code blocks. It is conventional to
include the # Examples section, exactly like that, with examples following.

Let’s run the tests again:

$ cargo test
Compiling adder v0.0.1 (file:///home/steve/tmp/adder)
Running target/adder-91b3e234d4ed382a

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Running target/lib-c18e7d3494509e74

running 1 test
test it works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Doc-tests adder

running 2 tests
test add two 0 ... ok
test _0 ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

Now we have all three kinds of tests running! Note the names of the
documentation tests: the 0 is generated for the module test, and add_two 0

for the function test. These will auto increment with names like add two 1
as you add more examples.

We haven’t covered all of the details with writing documentation tests. For
more, please see the Documentation chapter.

Conditional Compilation

Rust has a special attribute, #[cfg], which allows you to compile code
based on a flag passed to the compiler. It has two forms:

cfg(foo

cfg(bar "baz"

They also have some helpers:

cfg(any(unix, windows
cfg(all(unix, target_pointer width "32"

cfg(not(foo

These can nest arbitrarily:

cfg(any(not(unix all(target os="macos", target arch "powerpc"

As for how to enable or disable these switches, if you’re using Cargo, they
get set in the [features]_section of your Cargo.toml:

[features]
no features by default
default = []

Add feature "foo" here, then you can use it.
Our "foo" feature depends on nothing else.
foo = []

When you do this, Cargo passes along a flag to rustec:

--cfg feature="${feature name}"

http://doc.crates.io/manifest.html#the-features-section

The sum of these cfg flags will determine which ones get activated, and
therefore, which code gets compiled. Let’s take this code:

cfg(feature "foo"
mod foo {

}

If we compile it with cargo build --features "foo", it will send the --
cfg feature="foo" flag to rustc, and the output will have the mod foo in
it. If we compile it with a regular cargo build, no extra flags get passed on,
and so, no foo module will exist.

cfg_attr

You can also set another attribute based on a cfg variable with cfg_attr:

cfg attr(a, b

Will be the same as #[b] if a is set by cfg attribute, and nothing otherwise.
cfg!

The cfg! syntax extension lets you use these kinds of flags elsewhere in
your code, too:

if cfg!(target os = "macos") || cfg!(target os = "ios") {
println!("Think Different!");
}

These will be replaced by a true or false at compile-time, depending on
the configuration settings.

Documentation
Documentation is an important part of any software project, and it’s first-
class in Rust. Let’s talk about the tooling Rust gives you to document your

project.

About rustdoc

The Rust distribution includes a tool, rustdoc, that generates
documentation. rustdoc is also used by Cargo through cargo doc.

Documentation can be generated in two ways: from source code, and from
standalone Markdown files.

Documenting source code

The primary way of documenting a Rust project is through annotating the
source code. You can use documentation comments for this purpose:

/// Constructs a new "Rc<T>".

/77

/// # Examples

/77

/77 T

/// use std::rc::Rc;

/77

/// let five = Rc::new(5);

/77 T

pub fn new(value: T) -> Rc<T> {
// implementation goes here

}

This code generates documentation that looks like this. I’ve left the
implementation out, with a regular comment in its place.

The first thing to notice about this annotation is that it uses /// instead of
/ /. The triple slash indicates a documentation comment.

Documentation comments are written in Markdown.

Rust keeps track of these comments, and uses them when generating
documentation. This is important when documenting things like enums:

/// The “Option” type. See [the module level documentation] (#sec--index) for more.
enum Option<T> {

/// No value

None,

/// Some value T

Some(T),

The above works, but this does not:

http://doc.rust-lang.org/std/rc/struct.Rc.html#method.new

/// The “Option~ type. See [the module level documentation] (#sec--index) for more.
enum Option<T> {

None, /// No value

Some(T), /// Some value T

You'’ll get an error:

hello.rs:4:1: 4:2 error: expected ident, found ~}°
hello.rs:4 }

This unfortunate error is correct; documentation comments apply to the
thing after them, and there’s nothing after that last comment.

Writing documentation comments

Anyway, let’s cover each part of this comment in detail:

/// Constructs a new “Rc<T>".

The first line of a documentation comment should be a short summary of its
functionality. One sentence. Just the basics. High level.

/77
/// Other details about constructing “Rc<T>"s, maybe describing complicated
/// semantics, maybe additional options, all kinds of stuff.

/77

Our original example had just a summary line, but if we had more things to
say, we could have added more explanation in a new paragraph.

Special sections

Next, are special sections. These are indicated with a header, #. There are
four kinds of headers that are commonly used. They aren’t special syntax,
just convention, for now.

/// # Panics

https://github.com/rust-lang/rust/issues/22547

Unrecoverable misuses of a function (i.e. programming errors) in Rust are
usually indicated by panics, which kill the whole current thread at the very
least. If your function has a non-trivial contract like this, that is
detected/enforced by panics, documenting it is very important.

/// # Errors

If your function or method returns a Result<T, E>, then describing the
conditions under which it returns Err(E) is a nice thing to do. This is
slightly less important than panics, because failure is encoded into the type
system, but it’s still a good thing to do.

/// # Safety

If your function is unsafe, you should explain which invariants the caller is
responsible for upholding.

/// # Examples

/77

/77 70

/// use std::rc::Rc;

4

/// let five = Rc::new(5);
/77 70

Fourth, Examples. Include one or more examples of using your function or
method, and your users will love you for it. These examples go inside of
code block annotations, which we’ll talk about in a moment, and can have
more than one section:

/// # Examples

/77

/// Simple “&str” patterns:

/77

/77 70

/// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
/// assert_eq! (v, vec!["Mary", "had", "a", "little", "lamb"]);

/77 70

/77

/// More complex patterns with a lambda:

/77

/77 70

/// let v: Vec<&str> = "abcldef2ghi".split([c: char| c.is numeric()).collect();
/// assert _eq! (v, vec!["abc", "def", "ghi"]);

/77 70

Let’s discuss the details of these code blocks.

Code block annotations

To write some Rust code in a comment, use the triple graves:

/77 7T
/// println!("Hello, world");
/77 T

If you want something that’s not Rust code, you can add an annotation:

/// T Te
/// printf("Hello, world\n");
/77 T

This will highlight according to whatever language you’re showing off. If
you’re only showing plain text, choose text.

It’s important to choose the correct annotation here, because rustdoc uses it
in an interesting way: It can be used to actually test your examples in a
library crate, so that they don’t get out of date. If you have some C code but
rustdoc thinks it’s Rust because you left off the annotation, rustdoc will
complain when trying to generate the documentation.

Documentation as tests

Let’s discuss our sample example documentation:

/77 70
/// println!("Hello, world");
/77 70

You’ll notice that you don’t need a £fn main() or anything here. rustdoc
will automatically add a main() wrapper around your code, using heuristics
to attempt to put it in the right place. For example:

///7 "0
/// use std::rc::Rc;
///

/// let five = Rc::new(5);
/77 T

This will end up testing:

fn main() {
use std::rc::Rc;
let five = Rc::new(5);

}

Here’s the full algorithm rustdoc uses to preprocess examples:

1. Any leading #! [foo] attributes are left intact as crate attributes.

2.Some common allow attributes are inserted, including
unused_variables, unused_assignments, unused_mut,
unused_attributes, and dead code. Small examples often trigger
these lints.

3. If the example does not contain extern crate, then extern crate
<mycrate>; 1S inserted (note the lack of #[macro use]).

4. Finally, if the example does not contain £n main, the remainder of the
text is wrapped in fn main() { your_ code }.

This generated £fn main can be a problem! If you have extern crate or a
mod statements in the example code that are referred to by use statements,
they will fail to resolve unless you include at least £n main() {} to inhibit
step 4. #[macro use] extern crate also does not work except at the crate
root, so when testing macros an explicit main is always required. It doesn’t
have to clutter up your docs, though — keep reading!

Sometimes this algorithm isn’t enough, though. For example, all of these
code samples with /// we’ve been talking about? The raw text:

/// Some documentation.
fn foo() {}

looks different than the output:

/// Some documentation.

Yes, that’s right: you can add lines that start with #, and they will be hidden
from the output, but will be used when compiling your code. You can use

this to your advantage. In this case, documentation comments need to apply
to some kind of function, so if I want to show you just a documentation
comment, | need to add a little function definition below it. At the same
time, it’s only there to satisfy the compiler, so hiding it makes the example
more clear. You can use this technique to explain longer examples in detail,
while still preserving the testability of your documentation.

For example, imagine that we wanted to document this code:

let x = 5;
let y = 6;
println!("{}", x + y);

We might want the documentation to end up looking like this:

First, we set x to five:

let x = 5;
let y = 6;
println!("{}", x + y);

Next, we set y to SiX:

let x = 5;
let y = 6;
println!("{}", x + y);

Finally, we print the sum of x and y:

let x Sg
let y 6;
println!("{}", x + y);

To keep each code block testable, we want the whole program in each
block, but we don’t want the reader to see every line every time. Here’s
what we put in our source code:

First, we set "X to five:

TS rust

let x = 5;

let v = 6;

println!("{}", x + y);

Next, we set "y to six:

rust

let x = 5;

let y = 6;

println! ("{}", x + y);

Finally, we print the sum of “x~ and "y :
ST Trust

let x 5;

let y 6;

println! ("{}", x + y);

By repeating all parts of the example, you can ensure that your example still
compiles, while only showing the parts that are relevant to that part of your
explanation.

Documenting macros

Here’s an example of documenting a macro:

/// Panic with a given message unless an expression evaluates to true.
///
/// # Examples
///
/77 T
/// # #[macro use] extern crate foo;
/// # fn main() {
/// panic_unless!(1 + 1 == 2, “Math is broken.”);
/77 # }
/77 "0
///
/// " rust,should panic
/// # #[macro use] extern crate foo;
/// # fn main() {
/// panic_unless!(true == false, “I’m broken.”);
/77 # }
/77 T

macro_export
macro rules! panic_unless {

($condition:expr, $($rest:expr),+) => ({ if ! $condition { panic!($(S$rest),+); }

L)
}

You’ll note three things: we need to add our own extern crate line, so that
we can add the #[macro use] attribute. Second, we’ll need to add our own

main() as well (for reasons discussed above). Finally, a judicious use of #
to comment out those two things, so they don’t show up in the output.

Another case where the use of # is handy is when you want to ignore error
handling. Lets say you want the following,

/// use std::io;
/// let mut input = String::new();
/// try!(io::stdin().read_line(&mut input));

The problem is that try! returns a Result<T, E> and test functions don’t
return anything so this will give a mismatched types error.

/// A doc test using try!

/77

/77 7T

/// use std::io;

/// # fn foo() -> io::Result<()> {

/// let mut input = String::new();

/// try!(io::stdin().read line(&mut input));
/// # Ok(())

/7 # O}

/77 70

You can get around this by wrapping the code in a function. This catches
and swallows the Result<T, E> when running tests on the docs. This
pattern appears regularly in the standard library.

Running documentation tests

To run the tests, either:

$ rustdoc --test path/to/my/crate/root.rs
or
$ cargo test

That’s right, cargo test tests embedded documentation too. However,
cargo test will not test binary crates, only library ones. This is due to
the way rustdoc works: it links against the library to be tested, but with a
binary, there’s nothing to link to.

There are a few more annotations that are useful to help rustdoc do the
right thing when testing your code:

/// " rust,ignore
/// fn foo() {
/77 T

The ignore directive tells Rust to ignore your code. This is almost never
what you want, as it’s the most generic. Instead, consider annotating it with
text if it’s not code, or using #s to get a working example that only shows
the part you care about.

/// " rust,should panic
/// assert!(false);
/77 00

should panic tells rustdoc that the code should compile correctly, but not
actually pass as a test.

/// "~ rust,no run

/// loop {

/// println!("Hello, world");
/77 }

/77 T

The no run attribute will compile your code, but not run it. This is
important for examples such as “Here’s how to start up a network service,”
which you would want to make sure compile, but might run in an infinite
loop!

Documenting modules

Rust has another kind of doc comment, //!. This comment doesn’t
document the next item, but the enclosing item. In other words:

mod foo {
//! This is documentation for the ~foo module.
/71!
//! # Examples

/Y coo

This is where you’ll see //! used most often: for module documentation. If
you have a module in foo.rs, you’ll often open its code and see this:

//! A module for using foo's.
/71
//! The “foo ™ module contains a lot of useful functionality blah blah blah

Crate documentation

Crates can be documented by placing an inner doc comment (//!) at the
beginning of the crate root, aka 1ib.rs:

//! This is documentation for the ~foo~ crate.
/71!

//! The foo crate is meant to be used for bar.

Documentation comment style

Check out REC 505 for full conventions around the style and format of
documentation.

Other documentation

All of this behavior works in non-Rust source files too. Because comments
are written in Markdown, they’re often .md files.

When you write documentation in Markdown files, you don’t need to prefix
the documentation with comments. For example:

/// # Examples

/77

/77 70

/// use std::rc::Rc;

4

/// let five = Rc::new(5);
/77 70

is:
Examples

use std::rc::Rc;

let five = Rc::new(5);

https://github.com/rust-lang/rfcs/blob/master/text/0505-api-comment-conventions.md

when it’s in a Markdown file. There is one wrinkle though: Markdown files
need to have a title like this:

% The title

This is the example documentation.

This % line needs to be the very first line of the file.
doc attributes

At a deeper level, documentation comments are syntactic sugar for
documentation attributes:
/// this
doc="this"
are the same, as are these:
//! this

doc="this"

You won'’t often see this attribute used for writing documentation, but it can
be useful when changing some options, or when writing a macro.

Re-exports

rustdoc Will show the documentation for a public re-export in both places:

extern crate foo;

pub use foo::bar;

This will create documentation for bar both inside the documentation for
the crate foo, as well as the documentation for your crate. It will use the
same documentation in both places.

This behavior can be suppressed with no_inline:

extern crate foo;

doc(no_inline
pub use foo::bar;

Missing documentation

Sometimes you want to make sure that every single public thing in your
project is documented, especially when you are working on a library. Rust
allows you to to generate warnings or errors, when an item is missing
documentation. To generate warnings you use warn:

warn(missing docs

And to generate errors you use deny:

deny (missing docs

There are cases where you want to disable these warnings/errors to
explicitly leave something undocumented. This is done by using allow:

allow(missing docs
struct Undocumented;

You might even want to hide items from the documentation completely:

doc (hidden
struct Hidden;

Controlling HTML

You can control a few aspects of the HTML that rustdoc generates through
the #! [doc] version of the attribute:

doc(html logo_url "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png"
html favicon_url "https://www.rust-lang.org/favicon.ico"
html_root_url "https://doc.rust-lang.org/"

This sets a few different options, with a logo, favicon, and a root URL.

Configuring documentation tests
You can also configure the way that rustdoc tests your documentation
examples through the #! [doc(test(..))] attribute.

doc(test(attr(allow(unused variables deny (warnings

This allows unused variables within the examples, but will fail the test for
any other lint warning thrown.

Generation options

rustdoc also contains a few other options on the command line, for further
customization:

¢ __html-in-header FILE: includes the contents of FILE at the end of
the <head>. . .</head> section.

* __html-before-content FILE: includes the contents of FILE directly
after <body>, before the rendered content (including the search bar).

e __html-after-content FILE: includes the contents of FILE after all
the rendered content.

Security note

The Markdown in documentation comments is placed without processing
into the final webpage. Be careful with literal HTML.:

/// <script>alert(document.cookie)</script>

Iterators

Let’s talk about loops.

Remember Rust’s for loop? Here’s an example:

for x in 0..10 {
printin!("{}", x);
}

Now that you know more Rust, we can talk in detail about how this works.
Ranges (the 0..10) are ‘iterators’. An iterator is something that we can call
the .next () method on repeatedly, and it gives us a sequence of things.

(By the way, a range with two dots like 0..10 is inclusive on the left (so it
starts at 0) and exclusive on the right (so it ends at 9). A mathematician
would write “[0, 10)”. To get a range that goes all the way up to 10 you can
write 0...10.)

Like this:

let mut range = 0..10;

loop {
match range.next() {
Some (x) => {
printin!("{}", x);
Y

None => { break }

}

We make a mutable binding to the range, which is our iterator. We then
loop, with an inner match. This match 1s used on the result of
range.next (), which gives us a reference to the next value of the iterator.
next returns an Option<i32>, in this case, which will be some(i32) when
we have a value and None once we run out. If we get some (i32), we print it
out, and if we get None, we break out of the loop.

This code sample is basically the same as our for loop version. The for
loop is a handy way to write this loop/match/break construct.

for loops aren’t the only thing that uses iterators, however. Writing your
own iterator involves implementing the Iterator trait. While doing that is
outside of the scope of this guide, Rust provides a number of useful
iterators to accomplish various tasks. But first, a few notes about limitations
of ranges.

Ranges are very primitive, and we often can use better alternatives.
Consider the following Rust anti-pattern: using ranges to emulate a C-style

for loop. Let’s suppose you needed to iterate over the contents of a vector.
You may be tempted to write this:

let nums = vec![1, 2, 3];

for i in 0..nums.len() {
println!("{}", nums[i]);

}

This is strictly worse than using an actual iterator. You can iterate over
vectors directly, so write this:

let nums = vec![1, 2, 3];

for num in &nums {
println!("{}", num);

}

There are two reasons for this. First, this more directly expresses what we
mean. We iterate through the entire vector, rather than iterating through
indexes, and then indexing the vector. Second, this version is more efficient:
the first version will have extra bounds checking because it used indexing,
nums[i]. But since we yield a reference to each element of the vector in
turn with the iterator, there’s no bounds checking in the second example.
This is very common with iterators: we can ignore unnecessary bounds
checks, but still know that we’re safe.

There’s another detail here that’s not 100% clear because of how printin!
works. num is actually of type &i32. That is, it’s a reference to an 132, not an
i32 itself. println! handles the dereferencing for us, so we don’t see it.
This code works fine too:

let nums = vec![1, 2, 3];

for num in &nums {
println!("{}", *num);

}

Now we’re explicitly dereferencing num. Why does snums give us
references? Firstly, because we explicitly asked it to with &. Secondly, if it
gave us the data itself, we would have to be its owner, which would involve
making a copy of the data and giving us the copy. With references, we’re

only borrowing a reference to the data, and so it’s only passing a reference,
without needing to do the move.

So, now that we’ve established that ranges are often not what you want,
let’s talk about what you do want instead.

There are three broad classes of things that are relevant here: iterators,
iterator adaptors, and consumers. Here’s some definitions:

e iterators give you a sequence of values.

e iterator adaptors operate on an iterator, producing a new iterator with
a different output sequence.

e consumers operate on an iterator, producing some final set of values.

Let’s talk about consumers first, since you’ve already seen an iterator,
ranges.

Consumers

A consumer operates on an iterator, returning some kind of value or values.
The most common consumer iS collect(). This code doesn’t quite
compile, but it shows the intention:

let one_ to one hundred = (1..101).collect();

As you can see, we call collect() on our iterator. collect() takes as
many values as the iterator will give it, and returns a collection of the
results. So why won’t this compile? Rust can’t determine what type of
things you want to collect, and so you need to let it know. Here’s the
version that does compile:

let one to one hundred = (1..101).collect::<Vec<i32>>();

If you remember, the ::<> syntax allows us to give a type hint, and so we
tell it that we want a vector of integers. You don’t always need to use the
whole type, though. Using a _ will let you provide a partial hint:

let one_to _one hundred = (1..101).collect::<Vec<_>>();

This says “Collect into a vec<T>, please, but infer what the T is for me.” _is
sometimes called a “type placeholder” for this reason.

collect() 1S the most common consumer, but there are others too. £ind()
1S one:

let greater than forty two = (0..100)
Lfind(|x| *x > 42);

match greater than forty two {
Some(_) => println!("Found a match!"),
None => println!("No match found :("),

}

find takes a closure, and works on a reference to each element of an
iterator. This closure returns true if the element is the element we’re
looking for, and false otherwise. £ind returns the first element satisfying
the specified predicate. Because we might not find a matching element,
find returns an option rather than the element itself.

Another important consumer is fold. Here’s what it looks like:

let sum = (1l..4).fold(0, |sum, x| sum + x);

fold() is a consumer that looks like this: fold(base, |accumulator,
element| ...). It takes two arguments: the first is an element called the
base. The second is a closure that itself takes two arguments: the first is
called the accumulator, and the second is an element. Upon each iteration,
the closure is called, and the result is the value of the accumulator on the
next iteration. On the first iteration, the base is the value of the accumulator.

Okay, that’s a bit confusing. Let’s examine the values of all of these things
in this iterator:

base accumulator element closure result
0O O 1 1
0 1 2 3
0O 3 3 6

We called fo1ld () with these arguments:

.fold(0, |sum, x| sum + x);

So, 0 18 our base, sum is our accumulator, and x is our element. On the first
iteration, we set sum to 0, and x is the first element of nums, 1. We then add
sum and x, which gives us 0 + 1 = 1. On the second iteration, that value
becomes our accumulator, sum, and the element is the second element of the
array, 2. 1 + 2 = 3, and so that becomes the value of the accumulator for
the last iteration. On that iteration, x is the last element, 3, and 3 + 3 = &,
which is our final result for our sum. 1 + 2 + 3 = 6, and that’s the result
we got.

Whew. fold can be a bit strange the first few times you see it, but once it
clicks, you can use it all over the place. Any time you have a list of things,
and you want a single result, fold is appropriate.

Consumers are important due to one additional property of iterators we
haven’t talked about yet: laziness. Let’s talk some more about iterators, and
you’ll see why consumers matter.

Iterators

As we’ve said before, an iterator is something that we can call the .next ()
method on repeatedly, and it gives us a sequence of things. Because you
need to call the method, this means that iterators can be lazy and not
generate all of the values upfront. This code, for example, does not actually
generate the numbers 1-99, instead creating a value that merely represents
the sequence:

let nums = 1..100;

Since we didn’t do anything with the range, it didn’t generate the sequence.
Let’s add the consumer:

let nums = (1..100).collect::<Vec<i32>>();

Now, collect () will require that the range gives it some numbers, and so it
will do the work of generating the sequence.

Ranges are one of two basic iterators that you’ll see. The other is iter().
iter() can turn a vector into a simple iterator that gives you each element
in turn:

let nums = vec!/[1, 2, 3];

for num in nums.iter() {
printin!("{}", num);

}

These two basic iterators should serve you well. There are some more
advanced iterators, including ones that are infinite.

That’s enough about iterators. Iterator adaptors are the last concept we need
to talk about with regards to iterators. Let’s get to it!

Iterator adaptors

Iterator adaptors take an iterator and modify it somehow, producing a new
iterator. The simplest one is called map:

(1..100).map(|x| x + 1);

map 1s called upon another iterator, and produces a new iterator where each
element reference has the closure it’s been given as an argument called on
it. So this would give us the numbers from 2-100. Well, almost! If you
compile the example, you’ll get a warning:

warning: unused result which must be used: iterator adaptors are lazy and
do nothing unless consumed, #[warn(unused must_use)] on by default
(1..100) .map(|x| x + 1);

A

Laziness strikes again! That closure will never execute. This example
doesn’t print any numbers:

(1..100) .map(|x| println!("{}", x));

If you are trying to execute a closure on an iterator for its side effects, use
for instead.

There are tons of interesting iterator adaptors. take(n) will return an
iterator over the next n elements of the original iterator. Let’s try it out with
an infinite iterator:

for i in (1l..).take(5) {
println!("{}", i);
}

This will print

s W=

filter() is an adapter that takes a closure as an argument. This closure
returns true or false. The new iterator filter() produces only the
elements that the closure returns true for:

for i in (1..100).filter(|&x| x % 2 == 0) {
printlin!("{}", 1i);
}

This will print all of the even numbers between one and a hundred. (Note
that, unlike map, the closure passed to filter is passed a reference to the
element instead of the element itself. The filter predicate here uses the sx
pattern to extract the integer. The filter closure is passed a reference because
it returns true or false instead of the element, so the filter
implementation must retain ownership to put the elements into the newly
constructed iterator.)

You can chain all three things together: start with an iterator, adapt it a few
times, and then consume the result. Check it out:

(1..)
filter(|&x| x & 2 ==
filter(|&x| x & 3 ==
.take(5)
.collect::<Vec<i32>>();

This will give you a vector containing 6, 12, 18, 24, and 30.

This is just a small taste of what iterators, iterator adaptors, and consumers
can help you with. There are a number of really useful iterators, and you
can write your own as well. Iterators provide a safe, efficient way to
manipulate all kinds of lists. They’re a little unusual at first, but if you play
with them, you’ll get hooked. For a full list of the different iterators and
consumers, check out the iterator module documentation.

Concurrency

Concurrency and parallelism are incredibly important topics in computer
science, and are also a hot topic in industry today. Computers are gaining
more and more cores, yet many programmers aren’t prepared to fully utilize
them.

Rust’s memory safety features also apply to its concurrency story too. Even
concurrent Rust programs must be memory safe, having no data races.
Rust’s type system is up to the task, and gives you powerful ways to reason
about concurrent code at compile time.

Before we talk about the concurrency features that come with Rust, it’s
important to understand something: Rust is low-level enough that the vast
majority of this is provided by the standard library, not by the language.
This means that if you don’t like some aspect of the way Rust handles
concurrency, you can implement an alternative way of doing things. mio is
a real-world example of this principle in action.

Background: send and sync

Concurrency is difficult to reason about. In Rust, we have a strong, static
type system to help us reason about our code. As such, Rust gives us two
traits to help us make sense of code that can possibly be concurrent.

Send

http://doc.rust-lang.org/std/iter/index.html
https://github.com/carllerche/mio

The first trait we’re going to talk about is send. When a type T implements
Send, it indicates that something of this type is able to have ownership
transferred safely between threads.

This is important to enforce certain restrictions. For example, if we have a
channel connecting two threads, we would want to be able to send some
data down the channel and to the other thread. Therefore, we’d ensure that
send was implemented for that type.

In the opposite way, if we were wrapping a library with FEI that isn’t
threadsafe, we wouldn’t want to implement send, and so the compiler will
help us enforce that it can’t leave the current thread.

Sync

The second of these traits is called sync. When a type T implements sync, it
indicates that something of this type has no possibility of introducing
memory unsafety when used from multiple threads concurrently through
shared references. This implies that types which don’t have interior
mutability are inherently sync, which includes simple primitive types (like
u8) and aggregate types containing them.

For sharing references across threads, Rust provides a wrapper type called
Arc<T>. Arc<T> implements send and Sync if and only if T implements both
send and sync. For example, an object of type Arc<refcell<u>> cannot be
transferred across threads because Refcell does not implement Sync,
consequently Arc<rRefcell<u>> would not implement send.

These two traits allow you to use the type system to make strong guarantees
about the properties of your code under concurrency. Before we
demonstrate why, we need to learn how to create a concurrent Rust program
in the first place!

Threads

http://doc.rust-lang.org/std/marker/trait.Send.html
http://doc.rust-lang.org/std/marker/trait.Sync.html

Rust’s standard library provides a library for threads, which allow you to
run Rust code in parallel. Here’s a basic example of using std: : thread:

use std::thread;
fn main() {

thread: :spawn(|| {
println!("Hello from a thread!");

)i

The thread::spawn() method accepts a closure, which is executed in a
new thread. It returns a handle to the thread, that can be used to wait for the
child thread to finish and extract its result:

use std::thread;

fn main() {
let handle = thread::spawn(|| {
"Hello from a thread!"

)i

printin!("{}", handle.join().unwrap());

As closures can capture variables from their environment, we can also try to
bring some data into the other thread:

use std::thread;

fn main() {

let x = 1;

thread: :spawn(|| {
printin!("x is {}", x);

P

However, this gives us an error:

5:19: 7:6 error: closure may outlive the current function, but it
borrows “x°, which is owned by the current function

5:19: 7:6 help: to force the closure to take ownership of “x~ (and any other
reference
L d variables),

use the "move~ keyword, as shown:

thread: :spawn(move || {
println!("x is {}", x);

})i

This is because by default closures capture variables by reference, and thus
the closure only captures a reference to x. This is a problem, because the
thread may outlive the scope of x, leading to a dangling pointer.

To fix this, we use a move closure as mentioned in the error message. move
closures are explained in depth here; basically they move variables from
their environment into themselves.

use std::thread;

fn main() {

let x = 1;
thread: :spawn(move || {
println!("x is {}", x);

)i
}

Many languages have the ability to execute threads, but it’s wildly unsafe.
There are entire books about how to prevent errors that occur from shared
mutable state. Rust helps out with its type system here as well, by
preventing data races at compile time. Let’s talk about how you actually
share things between threads.

Safe Shared Mutable State

Due to Rust’s type system, we have a concept that sounds like a lie: “safe
shared mutable state.” Many programmers agree that shared mutable state is
very, very bad.

Someone once said this:

Shared mutable state is the root of all evil. Most languages attempt to
deal with this problem through the ‘mutable’ part, but Rust deals with
it by solving the ‘shared’ part.

The same ownership system that helps prevent using pointers incorrectly
also helps rule out data races, one of the worst kinds of concurrency bugs.

As an example, here is a Rust program that would have a data race in many
languages. It will not compile:

use std::thread;
use std::time::Duration;

fn main() {
let mut data = vec![1l, 2, 3];

for i in 0..3 {
thread: :spawn(move || {
data[0] += 1i;
})i
}

thread: :sleep(Duration::from millis(50));

This gives us an error:

8:17 error: capture of moved value: “data’
data[0] += 1i;

Rust knows this wouldn’t be safe! If we had a reference to data in each
thread, and the thread takes ownership of the reference, we’d have three
owners! data gets moved out of main in the first call to spawn(), so
subsequent calls in the loop cannot use this variable.

So, we need some type that lets us have more than one owning reference to
a value. Usually, we’d use rRe<T> for this, which is a reference counted type
that provides shared ownership. It has some runtime bookkeeping that
keeps track of the number of references to it, hence the “reference count”
part of its name.

Calling clone() on an Re<T> will return a new owned reference and bump
the internal reference count. We create one of these for each thread:

use std::thread;
use std::time::Duration;
use std::rc::Rc;

fn main() {
let mut data = Rc::new(vec![1l, 2, 3]);

for i in 0..3 {

// create a new owned reference
let data_ref = data.clone();

// use it in a thread
thread: :spawn(move || {
data ref[0] += i;
)i
}

thread: :sleep(Duration::from millis(50));

This won’t work, however, and will give us the error:

13:9: 13:22 error: the trait bound “alloc::rc::Rc<collections::vec::Vec<i32>> :
core::
L marker::Send”

is not satisfied

13:9: 13:22 note: "alloc::rc::Rc<collections::vec::Vec<i32>>"
cannot be sent between threads safely

As the error message mentions, Rc cannot be sent between threads safely.
This 1s because the internal reference count i1s not maintained in a thread
safe matter and can have a data race.

To solve this, we’ll use arc<T>, Rust’s standard atomic reference count
type.

The Atomic part means Arc<T> can safely be accessed from multiple
threads. To do this the compiler guarantees that mutations of the internal
count use indivisible operations which can’t have data races.

In essence, arc<T> is a type that lets us share ownership of data across
threads.

use std::thread;
use std::sync::Arc;
use std::time::Duration;

fn main() {
let mut data = Arc::new(vec![1l, 2, 3]);

for i in 0..3 {
let data = data.clone();
thread: :spawn(move || {
data[0] += 1i;
P)i

}

thread: :sleep(Duration::from millis(50));

Similarly to last time, we use clone() to create a new owned handle. This
handle is then moved into the new thread.

And... still gives us an error.

<anon>:11:24 error: cannot borrow immutable borrowed content as mutable
<anon>:11 data[0] += 1i;

Arc<T> by default has immutable contents. It allows the sharing of data
between threads, but shared mutable data is unsafe and when threads are
involved can cause data races!

Usually when we wish to make something in an immutable position
mutable, we use cell<T> or RefcCell<T> which allow safe mutation via
runtime checks or otherwise (see also: Choosing_Your Guarantees).
However, similar to rc, these are not thread safe. If we try using these, we
will get an error about these types not being sync, and the code will fail to
compile.

It looks like we need some type that allows us to safely mutate a shared
value across threads, for example a type that can ensure only one thread at a
time is able to mutate the value inside it at any one time.

For that, we can use the Mutex<T> type!

Here’s the working version:

use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

fn main() {
let data = Arc::new(Mutex::new(vec![1l, 2, 3]1));

for i in 0..3 {
let data = data.clone();
thread: :spawn(move || {
let mut data = data.lock().unwrap();

data[0] += 1i;
)i
}

thread: :sleep(Duration::from millis(50));

}

Note that the value of i is bound (copied) to the closure and not shared
among the threads.

We’re “locking” the mutex here. A mutex (short for “mutual exclusion™), as
mentioned, only allows one thread at a time to access a value. When we
wish to access the value, we use lock() on it. This will “lock™ the mutex,
and no other thread will be able to lock it (and hence, do anything with the
value) until we’re done with it. If a thread attempts to lock a mutex which is
already locked, it will wait until the other thread releases the lock.

The lock “release” here is implicit; when the result of the lock (in this case,
data) goes out of scope, the lock is automatically released.

Note that 1lock method of Mutex has this signature:

fn lock(&self) -> LockResult<MutexGuard<T>>

and because send is not implemented for MutexGuard<T>, the guard cannot
cross thread boundaries, ensuring thread-locality of lock acquire and
release.

Let’s examine the body of the thread more closely:

thread: :spawn(move || {
let mut data = data.lock().unwrap();
data[0] += 1i;

)i

First, we call 1ock(), which acquires the mutex’s lock. Because this may
fail, it returns a Result<T, E>, and because this is just an example, we
unwrap () it to get a reference to the data. Real code would have more
robust error handling here. We’re then free to mutate it, since we have the
lock.

http://doc.rust-lang.org/std/sync/struct.Mutex.html#method.lock
http://doc.rust-lang.org/std/sync/struct.Mutex.html

Lastly, while the threads are running, we wait on a short timer. But this is
not ideal: we may have picked a reasonable amount of time to wait but it’s
more likely we’ll either be waiting longer than necessary or not long
enough, depending on just how much time the threads actually take to finish
computing when the program runs.

A more precise alternative to the timer would be to use one of the
mechanisms provided by the Rust standard library for synchronizing
threads with each other. Let’s talk about one of them: channels.

Channels

Here’s a version of our code that uses channels for synchronization, rather
than waiting for a specific time:

use std::sync::{Arc, Mutex};
use std::thread;
use std::sync::mpsc;

fn main() {
let data = Arc::new(Mutex::new(0));

// “tx° 1s the "transmitter" or "sender"
// “rx~ 1s the "receiver"

let (tx, rx) = mpsc::channel();

for _ in 0..10 {

let (data, tx) = (data.clone(), tx.clone());
thread: :spawn(move || {
let mut data = data.lock().unwrap();
*data += 1;
tx.send(()).unwrap();

)
}

for _ in 0..10 {
rx.recv().unwrap():;

}

We use the mpsc: :channel () method to construct a new channel. We send
a simple () down the channel, and then wait for ten of them to come back.

While this channel is sending a generic signal, we can send any data that is
Send over the channel!

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

for i in 0..10 {
let tx = tx.clone();

thread: :spawn(move || {
let answer = i * 1i;

tx.send(answer) .unwrap();
)i
}
for _ in 0..10 {

printin!("{}", rx.recv().unwrap());

}

Here we create 10 threads, asking each to calculate the square of a number
(i at the time of spawn()), and then send() back the answer over the
channel.

Panics

A panic! will crash the currently executing thread. You can use Rust’s
threads as a simple isolation mechanism:

use std::thread;
let handle = thread::spawn(move || {

panic!("oops!");

b)i
let result = handle.join();
assert!(result.is err());

Thread.join() gives us a Result back, which allows us to check if the
thread has panicked or not.

Error Handling

Like most programming languages, Rust encourages the programmer to
handle errors in a particular way. Generally speaking, error handling is
divided into two broad categories: exceptions and return values. Rust opts
for return values.

In this section, we intend to provide a comprehensive treatment of how to
deal with errors in Rust. More than that, we will attempt to introduce error
handling one piece at a time so that you’ll come away with a solid working
knowledge of how everything fits together.

When done naively, error handling in Rust can be verbose and annoying.
This section will explore those stumbling blocks and demonstrate how to
use the standard library to make error handling concise and ergonomic.

Table of Contents

This section is very long, mostly because we start at the very beginning
with sum types and combinators, and try to motivate the way Rust does
error handling incrementally. As such, programmers with experience in
other expressive type systems may want to jump around.

e The Basics
o Unwrapping explained
o The option_type
= Composing Option<T> values
o The Result type
= Parsing integers
= The Result type alias idiom
o A brief interlude: unwrapping isn’t evil
e Working with multiple error types
o Cinp()Ling_thion and Result
o The limits of combinators
o Early returns
(@)

The try! macro

o Defining your own error type
o Standard library traits used for error handling
o The Error trait
o The From trait
o The real try! macro
o Composing custom error types
o Advice for library writers

o Initial setup
o Argument parsing
o Writing the logic
o Error handling with Box<Error>
o Reading from stdin
o Error handling with a custom type
o Adding functionality
e The short story,

The Basics

You can think of error handling as using case analysis to determine whether
a computation was successful or not. As you will see, the key to ergonomic
error handling is reducing the amount of explicit case analysis the
programmer has to do while keeping code composable.

Keeping code composable is important, because without that requirement,
we could panic whenever we come across something unexpected. (panic
causes the current task to unwind, and in most cases, the entire program
aborts.) Here’s an example:

// Guess a number between 1 and 10.
// If it matches the number we had in mind, return true. Else, return false.
fn guess(n: i32) -> bool {

ifn<1]|| n>10 {

panic!("Invalid number: {}", n);

}

n ==25
}

fn main() {

http://doc.rust-lang.org/std/macro.panic!.html

guess(11);
}

If you try running this code, the program will crash with a message like
this:

thread 'main' panicked at 'Invalid number: 11', src/bin/panic-simple.rs:5

Here’s another example that is slightly less contrived. A program that
accepts an integer as an argument, doubles it and prints it.

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(l).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
printin!("{}", 2 * n);

}

If you give this program zero arguments (error 1) or if the first argument
isn’t an integer (error 2), the program will panic just like in the first
example.

You can think of this style of error handling as similar to a bull running
through a china shop. The bull will get to where it wants to go, but it will
trample everything in the process.

Unwrapping explained

In the previous example, we claimed that the program would simply panic
if it reached one of the two error conditions, yet, the program does not
include an explicit call to panic like the first example. This is because the
panic is embedded in the calls to unwrap.

To “unwrap” something in Rust is to say, “Give me the result of the
computation, and if there was an error, panic and stop the program.” It
would be better if we showed the code for unwrapping because it is so
simple, but to do that, we will first need to explore the option and Result
types. Both of these types have a method called unwrap defined on them.

The option type

The option type is defined in the standard library:

enum Option<T> {
None,
Some(T),

The option type is a way to use Rust’s type system to express the
possibility of absence. Encoding the possibility of absence into the type
system is an important concept because it will cause the compiler to force
the programmer to handle that absence. Let’s take a look at an example that
tries to find a character in a string:

// Searches “haystack™ for the Unicode character “needle”. If one is found, the
// byte offset of the character is returned. Otherwise, “None 1is returned.
fn find(haystack: &str, needle: char) -> Option<usize> {
for (offset, c) in haystack.char indices() {
if ¢ == needle {
return Some(offset);

}

None

Notice that when this function finds a matching character, it doesn’t only
return the offset. Instead, it returns Some (offset). Some iS a variant or a
value constructor for the option type. You can think of it as a function with
the type £n<T>(value: T) -> Option<T>. Correspondingly, None is also a
value constructor, except it has no arguments. You can think of None as a
function with the type £n<T>() -> Option<T>.

This might seem like much ado about nothing, but this is only half of the
story. The other half is using the £ind function we’ve written. Let’s try to
use it to find the extension in a file name.

fn main() {
let file name = "foobar.rs";
match find(file_name, '.') {
None => println!("No file extension found."),
Some(i) => printin!("File extension: {}", &file name[i+l..]),

http://doc.rust-lang.org/std/option/enum.Option.html

This code uses pattern matching to do case analysis on the option<usize>
returned by the £ind function. In fact, case analysis is the only way to get at
the value stored inside an option<T>. This means that you, as the
programmer, must handle the case when an option<T> is None instead of
Some(t).

But wait, what about unwrap, which we used previously? There was no case
analysis there! Instead, the case analysis was put inside the unwrap method
for you. You could define it yourself if you want:

enum Option<T> {
None,
Some(T),

}

impl<T> Option<T> {
fn unwrap(self) -> T {
match self {
Option::Some(val) => val,
Option: :None =>
panic!("called "Option::unwrap() on a None value"),

}

The unwrap method abstracts away the case analysis. This is precisely the
thing that makes unwrap ergonomic to use. Unfortunately, that panic!
means that unwrap is not composable: it is the bull in the china shop.

Composing option<T> values

In an example from before, we saw how to use find to discover the
extension in a file name. Of course, not all file names have a . in them, so
it’s possible that the file name has no extension. This possibility of absence
is encoded into the types using option<T>. In other words, the compiler
will force us to address the possibility that an extension does not exist. In
our case, we only print out a message saying as such.

Getting the extension of a file name is a pretty common operation, so it
makes sense to put it into a function:

http://doc.rust-lang.org/book/patterns.html

// Returns the extension of the given file name, where the extension is defined
// as all characters following the first ~.°

// If “file name has no ~. , then "None is returned.
fn extension_explicit(file name: &str) -> Option<é&str> {
match find(file name, '."') {

None => None,
Some(i) => Some(&file_ name[i+l..]),

(Pro-tip: don’t use this code. Use the extension method in the standard
library instead.)

The code stays simple, but the important thing to notice is that the type of
find forces us to consider the possibility of absence. This is a good thing
because it means the compiler won’t let us accidentally forget about the
case where a file name doesn’t have an extension. On the other hand, doing
explicit case analysis like we’ve done in extension _explicit every time
can get a bit tiresome.

In fact, the case analysis in extension_explicit follows a very common
pattern: map a function on to the value inside of an option<T>, unless the
option is None, in which case, return None.

Rust has parametric polymorphism, so it is very easy to define a combinator
that abstracts this pattern:

fn map<F, T, A>(option: Option<T>, f: F) -> Option<A> where F: FnOnce(T) -> A {
match option {
None => None,
Some (value) => Some(f(value)),

Indeed, map is defined as a method on option<T> in the standard library. As
a method, it has a slightly different signature: methods take self, sself, or
smut self as their first argument.

Armed with our new combinator, we can rewrite our extension explicit
method to get rid of the case analysis:

// Returns the extension of the given file name, where the extension is defined
// as all characters following the first ~.~
// If “file name has no ~. , then "None is returned.

http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/option/enum.Option.html#method.map

fn extension(file name: &str) -> Option<&str> {
find(file name, '.').map(|i| &file name[i+1..])

}

One other pattern we commonly find is assigning a default value to the case
when an option value is None. For example, maybe your program assumes
that the extension of a file is rs even if none is present. As you might
imagine, the case analysis for this is not specific to file extensions - it can
work with any option<T>:

fn unwrap or<T>(option: Option<T>, default: T) -> T {
match option {
None => default,
Some (value) => value,

Like with map above, the standard library implementation is a method
instead of a free function.

The trick here is that the default value must have the same type as the value
that might be inside the option<T>. Using it is dead simple in our case:

fn main() {
assert_eq!(extension("foobar.csv").unwrap _or("rs"), "csv");
assert eq!(extension("foobar").unwrap or("rs"), "rs");

(Note that unwrap or is defined as a method on option<T> in the standard
library, so we use that here instead of the free-standing function we defined
above. Don’t forget to check out the more general unwrap or else
method.)

There is one more combinator that we think is worth paying special
attention to: and then. It makes it easy to compose distinct computations
that admit the possibility of absence. For example, much of the code in this
section is about finding an extension given a file name. In order to do this,
you first need the file name which is typically extracted from a file path.
While most file paths have a file name, not all of them do. For example, .,
.. or/.

http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else

So, we are tasked with the challenge of finding an extension given a file
path. Let’s start with explicit case analysis:

fn file path ext explicit(file path: &str) -> Option<&str> {
match file name(file path) {
None => None,
Some (name) => match extension(name) {
None => None,
Some (ext) => Some(ext),

}

fn file name(file_path: &str) -> Option<&str> {
// implementation elided
unimplemented! ()

}

You might think that we could use the map combinator to reduce the case
analysis, but its type doesn’t quite fit...

fn file path ext(file path: &str) -> Option<&str> {
file name(file path).map(|x| extension(x)) //Compilation error

}

The map function here wraps the value returned by the extension function
inside an option< > and since the extension function itself returns an
Option<&str> the expression file name(file path).map(|x]|
extension(x)) actually returns an Option<Option<s&str>>.

But since file path ext just returns Option<sstr> (and not
Option<Option<&str>>) we get a compilation error.

The result of the function taken by map as input is always rewrapped with
some. Instead, we need something like map, but which allows the caller to
return a option<_> directly without wrapping it in another option<_>.

Its generic implementation is even simpler than map:

fn and then<F, T, A>(option: Option<T>, f: F) -> Option<aA>
where F: FnOnce(T) -> Option<A> {
match option {
None => None,
Some (value) => f(value),

Now we can rewrite our file path ext function without explicit case
analysis:

fn file path ext(file path: &str) -> Option<&str> {
file name(file_path).and then(extension)

}

Side note: Since and_then essentially works like map but returns an
Option< > instead of an oOption<Option< >> it is known as flatmap in
some other languages.

The option type has many other combinators defined in the standard
library. It is a good idea to skim this list and familiarize yourself with
what’s available—they can often reduce case analysis for you.
Familiarizing yourself with these combinators will pay dividends because
many of them are also defined (with similar semantics) for Result, which
we will talk about next.

Combinators make using types like option ergonomic because they reduce
explicit case analysis. They are also composable because they permit the
caller to handle the possibility of absence in their own way. Methods like
unwrap remove choices because they will panic if option<T> iS None.

The Result type

The rResult type is also defined in the standard library:

enum Result<T, E> {
ok(T),
Err(E),

}

The Result type is a richer version of option. Instead of expressing the
possibility of absence like option does, Result expresses the possibility of
error. Usually, the error is used to explain why the execution of some
computation failed. This is a strictly more general form of option. Consider
the following type alias, which is semantically equivalent to the real
Option<T> in every way:

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/index.html

type Option<T> = Result<T, ()>;

This fixes the second type parameter of Result to always be ()
(pronounced “unit” or “empty tuple”). Exactly one value inhabits the ()
type: (). (Yup, the type and value level terms have the same notation!)

The rResult type is a way of representing one of two possible outcomes in a
computation. By convention, one outcome is meant to be expected or “ok”
while the other outcome is meant to be unexpected or “Err”.

Just like option, the Result type also has an unwrap_method defined in the
standard library. Let’s define it:

impl<T, E: ::std::fmt::Debug> Result<T, E> {
fn unwrap(self) -> T {
match self {
Result::0k(val) => val,
Result::Err(err) =>
panic!("called "Result::unwrap() on an Err value: {:?}", err),

}

This is effectively the same as our definition for option: :unwrap, except it
includes the error value in the panic! message. This makes debugging
easier, but it also requires us to add a pebug constraint on the E type
parameter (which represents our error type). Since the vast majority of
types should satisfy the bebug constraint, this tends to work out in practice.
(Debug on a type simply means that there’s a reasonable way to print a
human readable description of values with that type.)

OK, let’s move on to an example.
Parsing integers

The Rust standard library makes converting strings to integers dead simple.
It’s so easy in fact, that it is very tempting to write something like the
following:

fn double number (number str: &str) -> i32 {
2 * number str.parse::<i32>().unwrap()

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/fmt/trait.Debug.html

}

fn main() {
let n: i32 = double number("10");
assert _eq!(n, 20);

}

At this point, you should be skeptical of calling unwrap. For example, if the
string doesn’t parse as a number, you’ll get a panic:

thread 'main' panicked at 'called “Result::unwrap() on an “Err"~ value:

ParseIntError

L { kind: InvalidDigit }', /home/rustbuild/src/rust-buildbot/slave/beta-dist-rustc-
lin

L ux/build/src/libcore/result.rs:729

This is rather unsightly, and if this happened inside a library you’re using,
you might be understandably annoyed. Instead, we should try to handle the
error in our function and let the caller decide what to do. This means
changing the return type of double number. But to what? Well, that requires

looking at the signature of the parse_method in the standard library:

impl str {
fn parse<F: FromStr>(&self) -> Result<F, F::Err>;

}

Hmm. So we at least know that we need to use a Result. Certainly, it’s
possible that this could have returned an option. After all, a string either
parses as a number or it doesn’t, right? That’s certainly a reasonable way to
go, but the implementation internally distinguishes why the string didn’t
parse as an integer. (Whether it’s an empty string, an invalid digit, too big or
too small.) Therefore, using a Result makes sense because we want to
provide more information than simply “absence.” We want to say why the
parsing failed. You should try to emulate this line of reasoning when faced
with a choice between option and Result. If you can provide detailed error
information, then you probably should. (We’ll see more on this later.)

OK, but how do we write our return type? The parse method as defined
above is generic over all the different number types defined in the standard
library. We could (and probably should) also make our function generic, but
let’s favor explicitness for the moment. We only care about i32, so we need
to find its implementation of Fromstr (do a CTRL-F in your browser for

http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.i32.html

“FromStr”) and look at its associated type Err. We did this so we can find
the concrete error type. In this case, it’s std::num::ParseIntError.
Finally, we can rewrite our function:

use std::num::ParselIntError;

fn double number (number str: &str) -> Result<i32, ParseIntError> {
match number_ str.parse::<i32>() {
Ok(n) => Ok(2 * n),
Err(err) => Err(err),

}

fn main() {
match double number("10") {
Ok(n) => assert eqg!(n, 20),
Err(err) => println!("Error: {:?}", err),

This i1s a little better, but now we’ve written a lot more code! The case
analysis has once again bitten us.

Combinators to the rescue! Just like option, Result has lots of combinators
defined as methods. There is a large intersection of common combinators
between Result and option. In particular, map is part of that intersection:

use std::num::ParseIntError;

fn double number (number str: &str) -> Result<i32, ParseIntError> {
number str.parse::<i32>().map(|n| 2 * n)

}

fn main() {
match double number("10") {
Ok(n) => assert eq!/(n, 20),
Err(err) => println!("Error: {:?}", err),

The usual suspects are all there for Result, including unwrap or and
and_then. Additionally, since Result has a second type parameter, there are
combinators that affect only the error type, such as map_err (instead of map)
and or_else (instead of and_then).

The Result type alias idiom

http://doc.rust-lang.org/book/associated-types.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else

In the standard library, you may frequently see types like Result<i32>. But
wait, we defined Result to have two type parameters. How can we get
away with only specifying one? The key is to define a Result type alias that
fixes one of the type parameters to a particular type. Usually the fixed type
is the error type. For example, our previous example parsing integers could
be rewritten like this:

use std::num::ParselIntError;
use std::result;

type Result<T> = result::Result<T, ParselIntError>;

fn double number (number str: &str) -> Result<i32> {
unimplemented!();

}

Why would we do this? Well, if we have a lot of functions that could return
ParseIntError, then it’s much more convenient to define an alias that
always uses ParseIntError so that we don’t have to write it out all the
time.

The most prominent place this idiom is used in the standard library is with
io::Result. Typically, one writes io::Result<T>, which makes it clear
that you’re using the io module’s type alias instead of the plain definition
from std: :result. (This idiom is also used for fmt: :Result.)

A brief interlude: unwrapping isn’t evil

If you’ve been following along, you might have noticed that I've taken a
pretty hard line against calling methods like unwrap that could panic and
abort your program. Generally speaking, this is good advice.

However, unwrap can still be used judiciously. What exactly justifies use of
unwrap 1S somewhat of a grey area and reasonable people can disagree. I'll
summarize some of my opinions on the matter.

e In examples and quick ‘n’ dirty code. Sometimes you’re writing
examples or a quick program, and error handling simply isn’t

http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

important. Beating the convenience of unwrap can be hard in such
scenarios, so it is very appealing.

e When panicking indicates a bug in the program. When the
invariants of your code should prevent a certain case from happening
(like, say, popping from an empty stack), then panicking can be
permissible. This is because it exposes a bug in your program. This
can be explicit, like from an assert! failing, or it could be because
your index into an array was out of bounds.

This is probably not an exhaustive list. Moreover, when using an Option, it
is often better to use its expect method. expect does exactly the same thing
as unwrap, except it prints a message you give to expect. This makes the
resulting panic a bit nicer to deal with, since it will show your message
instead of “called unwrap on a None value.”

My advice boils down to this: use good judgment. There’s a reason why the
words “never do X” or “Y is considered harmful” don’t appear in my
writing. There are trade offs to all things, and it is up to you as the
programmer to determine what is acceptable for your use cases. My goal is
only to help you evaluate trade offs as accurately as possible.

Now that we’ve covered the basics of error handling in Rust, and explained
unwrapping, let’s start exploring more of the standard library.

Working with multiple error types

Thus far, we’ve looked at error handling where everything was either an
Option<T> Or a Result<T, SomeError>. But what happens when you have
both an option and a Result? Or what if you have a Result<T, Errorl>
and a Result<T, Error2>? Handling composition of distinct error types is
the next challenge in front of us, and it will be the major theme throughout
the rest of this section.

Composing option and Result

http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

So far, I’ve talked about combinators defined for option and combinators
defined for result. We can use these combinators to compose results of
different computations without doing explicit case analysis.

Of course, in real code, things aren’t always as clean. Sometimes you have
a mix of option and Result types. Must we resort to explicit case analysis,
or can we continue using combinators?

For now, let’s revisit one of the first examples in this section:

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(l).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
printin!("{}", 2 * n);

Given our new found knowledge of option, Result and their various
combinators, we should try to rewrite this so that errors are handled
properly and the program doesn’t panic if there’s an error.

The tricky aspect here is that argv.nth(1l) produces an option while
arg.parse() produces a Result. These aren’t directly composable. When
faced with both an option and a Result, the solution is usually to convert
the option to a Result. In our case, the absence of a command line
parameter (from env::args()) means the user didn’t invoke the program
correctly. We could use a string to describe the error. Let’s try:

use std::env;

fn double arg(mut argv: env::Args) -> Result<i32, String> {
argv.nth(1l)
.0k or("Please give at least one argument".to owned())
.and_then(|arg| arg.parse::<i32>().map err(|err| err.to string()))
.map(|n| 2 * n)

}

fn main() {
match double arg(env::args()) {
Ok(n) => printlin!("{}", n),
Err(err) => println!("Error: {}", err),

There are a couple new things in this example. The first is the use of the
Option::ok or combinator. This is one way to convert an Option into a
Result. The conversion requires you to specify what error to use if option
is None. Like the other combinators we’ve seen, its definition is very simple:

fn ok_or<T, E>(option: Option<T>, err: E) -> Result<T, E> {
match option {
Some(val) => Ok(val),
None => Err(err),

}

The other new combinator used here iS Result::map _err. This is like
Result: :map, except it maps a function on to the error portion of a Result
value. If the Result is an ok (...) value, then it is returned unmodified.

We use map_err here because it is necessary for the error types to remain
the same (because of our use of and then). Since we chose to convert the
Option<String> (from argv.nth(1)) t0 a Result<String, String>, we
must also convert the ParseIntError from arg.parse() to a String.

The limits of combinators

Doing IO and parsing input is a very common task, and it’s one that I
personally have done a lot of in Rust. Therefore, we will use (and continue
to use) IO and various parsing routines to exemplify error handling.

Let’s start simple. We are tasked with opening a file, reading all of its
contents and converting its contents to a number. Then we multiply it by 2
and print the output.

Although I’ve tried to convince you not to use unwrap, it can be useful to
first write your code using unwrap. It allows you to focus on your problem
instead of the error handling, and it exposes the points where proper error
handling need to occur. Let’s start there so we can get a handle on the code,
and then refactor it to use better error handling.

use std::fs::File;
use std::io::Read;
use std::path::Path;

http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err

fn file double<P: AsRef<Path>>(file path: P) -> i32 {

let mut file = File::open(file path).unwrap(); // error 1
let mut contents = String::new();

file.read to_string(&mut contents).unwrap(); // error 2
let n: i32 = contents.trim().parse().unwrap(); // error 3
2 *n

}

fn main() {
let doubled = file double("foobar");
println!("{}", doubled);

}

(N.B. The asref<rPath> is used because those are the same bounds used on
std::fs::File::open. This makes it ergonomic to use any kind of string
as a file path.)

There are three different errors that can occur here:

1. A problem opening the file.
2. A problem reading data from the file.
3. A problem parsing the data as a number.

The first two problems are described via the std::io::Error type. We
know this because of the return types of std::fs::File::open and
std::io::Read::read to string. (Note that they both use the Result
type alias idiom described previously. If you click on the Result type,
you’ll see the type alias, and consequently, the underlying io: :Error type.)
The third problem is described by the std: :num: :ParseIntError type. The
io::Error type in particular is pervasive throughout the standard library.
You will see it again and again.

Let’s start the process of refactoring the file double function. To make
this function composable with other components of the program, it should
not panic if any of the above error conditions are met. Effectively, this
means that the function should return an error if any of its operations fail.
Our problem is that the return type of file double is i32, which does not
give us any useful way of reporting an error. Thus, we must start by
changing the return type from i32 to something else.

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

The first thing we need to decide: should we use option or Result? We
certainly could use option very easily. If any of the three errors occur, we
could simply return None. This will work and it is better than panicking, but
we can do a lot better. Instead, we should pass some detail about the error
that occurred. Since we want to express the possibility of error, we should
use Result<i32, E>. But what should E be? Since two different types of
errors can occur, we need to convert them to a common type. One such type
1s string. Let’s see how that impacts our code:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, String> {
File::open(file path)
.map_err(|err| err.to string())
.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)
.map_err(|err| err.to_string())
.map(|_| contents)

1)
.and_then(|contents| {
contents.trim().parse: :<i32>()
.map_err(|err| err.to string())

1)
.map(|n| 2 * n)

}

fn main() {
match file double("foobar") {
Ok(n) => printlin!("{}", n),
Err(err) => println!("Error: {}", err),

This code looks a bit hairy. It can take quite a bit of practice before code
like this becomes easy to write. The way we write it is by following the
types. As soon as we changed the return type of file double tO
Result<i32, String>, we had to start looking for the right combinators. In
this case, we only used three different combinators: and then, map and
map err.

and_then is used to chain multiple computations where each computation
could return an error. After opening the file, there are two more

computations that could fail: reading from the file and parsing the contents
as a number. Correspondingly, there are two calls to and_then.

map 1S used to apply a function to the ok(...) value of a Result. For
example, the very last call to map multiplies the ok(...) value (which is an
i32) by 2. If an error had occurred before that point, this operation would
have been skipped because of how map is defined.

map_err is the trick that makes all of this work. map err is like map, except
it applies a function to the Err(...) value of a Result. In this case, we
want to convert all of our errors to one type: String. Since both io: :Error
and num::ParseIntError implement Tostring, we can call the
to_string() method to convert them.

With all of that said, the code is still hairy. Mastering use of combinators is
important, but they have their limits. Let’s try a different approach: early
returns.

Early returns

I’d like to take the code from the previous section and rewrite it using early
returns. Early returns let you exit the function early. We can’t return early in
file double from inside another closure, so we’ll need to revert back to
explicit case analysis.

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, String> {
let mut file = match File::open(file path) {
Ok(file) => file,
Err(err) => return Err(err.to string()),
}i
let mut contents = String::new();
if let Err(err) = file.read to_string(&mut contents) {
return Err(err.to_string());
}
let n: i32 = match contents.trim().parse() {
Ok(n) => n,
Err(err) => return Err(err.to string()),
}i
Ok(2 * n)

}

fn main() {
match file double("foobar") {
Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}

Reasonable people can disagree over whether this code is better than the
code that uses combinators, but if you aren’t familiar with the combinator
approach, this code looks simpler to read to me. It uses explicit case
analysis with match and if 1let. If an error occurs, it simply stops
executing the function and returns the error (by converting it to a string).

Isn’t this a step backwards though? Previously, we said that the key to
ergonomic error handling is reducing explicit case analysis, yet we’ve
reverted back to explicit case analysis here. It turns out, there are multiple
ways to reduce explicit case analysis. Combinators aren’t the only way.

The try! macro

A cornerstone of error handling in Rust is the try! macro. The try! macro
abstracts case analysis like combinators, but unlike combinators, it also
abstracts control flow. Namely, it can abstract the early return pattern seen
above.

Here is a simplified definition of a try! macro:

macro rules! try {
(Se:expr) => (match Se {
Ok(val) => val,
Err(err) => return Err(err),
F)i
}

(The real definition is a bit more sophisticated. We will address that later.)

Using the try! macro makes it very easy to simplify our last example.
Since it does the case analysis and the early return for us, we get tighter
code that is easier to read:

http://doc.rust-lang.org/std/macro.try!.html

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, String> {
let mut file = try!/(File::open(file path).map err(|e| e.to_string()));
let mut contents = String::new();
try!(file.read_to string(&mut contents).map err(|e| e.to_string()));
let n = try!(contents.trim().parse::<i32>().map_err(|e| e.to_string()));
0k(2 * n)

}

fn main() {
match file double("foobar") {
Ok(n) => printin!("{}", n),
Err(err) => println!("Error: {}", err),

The map_err calls are still necessary given our definition of try!. This is
because the error types still need to be converted to string. The good news
is that we will soon learn how to remove those map err calls! The bad news
is that we will need to learn a bit more about a couple important traits in the
standard library before we can remove the map err calls.

Defining your own error type

Before we dive into some of the standard library error traits, I’d like to wrap
up this section by removing the use of string as our error type in the
previous examples.

Using string as we did in our previous examples is convenient because it’s
easy to convert errors to strings, or even make up your own errors as strings
on the spot. However, using string for your errors has some downsides.

The first downside is that the error messages tend to clutter your code. It’s
possible to define the error messages elsewhere, but unless you’re unusually
disciplined, it is very tempting to embed the error message into your code.
Indeed, we did exactly this in a previous example.

The second and more important downside is that strings are /ossy. That is,
if all errors are converted to strings, then the errors we pass to the caller
become completely opaque. The only reasonable thing the caller can do

with a string error is show it to the user. Certainly, inspecting the string to
determine the type of error is not robust. (Admittedly, this downside is far
more important inside of a library as opposed to, say, an application.)

For example, the io::Error type embeds an io::ErrorkKind, which is
structured data that represents what went wrong during an IO operation.
This is important because you might want to react differently depending on
the error. (e.g., A BrokenPipe error might mean quitting your program
gracefully while a NotFound error might mean exiting with an error code
and showing an error to the user.) With io::ErrorKind, the caller can
examine the type of an error with case analysis, which is strictly superior to
trying to tease out the details of an error inside of a string.

Instead of using a string as an error type in our previous example of
reading an integer from a file, we can define our own error type that
represents errors with structured data. We endeavor to not drop information
from underlying errors in case the caller wants to inspect the details.

The ideal way to represent one of many possibilities is to define our own
sum type using enum. In our case, an error is either an io::Error or a
num: :ParseIntError, SO a natural definition arises:

use std::io;
use std::num;

// We derive “Debug” because all types should probably derive “Debug.
// This gives us a reasonable human readable description of “CliError values.
derive (Debug
enum CliError {
Io(io::Error),
Parse(num: :ParseIntError),

Tweaking our code is very easy. Instead of converting errors to strings, we
simply convert them to our cliError type using the corresponding value
constructor:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, CliError> {

http://doc.rust-lang.org/std/io/enum.ErrorKind.html

let mut file = try!(File::open(file path).map err(CliError::Io));
let mut contents = String::new();
try!(file.read to_string(&mut contents).map err(CliError::Io));
let n: i32 = try!(contents.trim().parse().map err(CliError::Parse));
Ok(2 * n)

}

fn main() {
match file double("foobar") {
Ok(n) => printlin!("{}", n),
Err(err) => println!("Error: {:?}", err),

The only change here is switching map err(|e| e.to string()) (which
converts errors to strings) t0O map err(CliError::Io) or
map err(CliError::Parse). The caller gets to decide the level of detail to
report to the user. In effect, using a string as an error type removes choices
from the caller while using a custom enum error type like CliError gives
the caller all of the conveniences as before in addition to structured data
describing the error.

A rule of thumb is to define your own error type, but a string error type
will do in a pinch, particularly if you’re writing an application. If you’re
writing a library, defining your own error type should be strongly preferred
so that you don’t remove choices from the caller unnecessarily.

Standard library traits used for error handling

The standard library defines two integral traits for error handling:
std::error::Error and std::convert::From. While Error is designed
specifically for generically describing errors, the From trait serves a more
general role for converting values between two distinct types.

The Error trait

The Error trait is defined in the standard library:

use std::fmt::{Debug, Display};

trait Error: Debug + Display {
/// A short description of the error.

http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html

fn description(&self) -> &str;

/// The lower level cause of this error, if any.
fn cause(&self) -> Option<&Error> { None }

}

This trait is super generic because it is meant to be implemented for all
types that represent errors. This will prove useful for writing composable
code as we’ll see later. Otherwise, the trait allows you to do at least the
following things:

e Obtain a bebug representation of the error.

e Obtain a user-facing pisplay representation of the error.

e Obtain a short description of the error (via the description method).

e Inspect the causal chain of an error, if one exists (via the cause
method).

The first two are a result of Error requiring impls for both pebug and
Display. The latter two are from the two methods defined on Error. The
power of Error comes from the fact that all error types impl Error, which
means errors can be existentially quantified as a trait object. This manifests
as either Box<Error> or &Error. Indeed, the cause method returns an
&Error, which is itself a trait object. We’ll revisit the Error trait’s utility as
a trait object later.

For now, it suffices to show an example implementing the Error trait. Let’s
use the error type we defined in the previous section:

use std::io;
use std::num;

// We derive ~Debug” because all types should probably derive ~Debug-.
// This gives us a reasonable human readable description of “CliError values.
derive (Debug
enum CliError {
Io(io::Error),
Parse(num: :ParseIntError),

This particular error type represents the possibility of two types of errors
occurring: an error dealing with I/O or an error converting a string to a

http://doc.rust-lang.org/book/trait-objects.html

number. The error could represent as many error types as you want by
adding new variants to the enum definition.

Implementing Error is pretty straight-forward. It’s mostly going to be a lot
explicit case analysis.

use std::error;
use std::fmt;

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
// Both underlying errors already impl “Display~, so we defer to
// their implementations.
CliError::Io(ref err) => write!(f, "IO error: {}", err),
CliError: :Parse(ref err) => write!(f, "Parse error: {}", err),

}

impl error::Error for CliError {
fn description(&self) -> &str {
// Both underlying errors already impl “Error , so we defer to their
// implementations.
match *self {
CliError::Io(ref err) => err.description(),
CliError::Parse(ref err) => err.description(),

}

fn cause(&self) -> Option<&error::Error> {
match *self {

// N.B. Both of these implicitly cast “err from their concrete
// types (either “&io::Error or ~&num::ParseIntError’)
// to a trait object “&Error . This works because both error types
// implement “Error .
CliError::Io(ref err) => Some(err),
CliError::Parse(ref err) => Some(err),

We note that this is a very typical implementation of Error: match on your
different error types and satisfy the contracts defined for description and

cause.
The From trait

The std::convert: :From trait is defined in the standard library:

http://doc.rust-lang.org/std/convert/trait.From.html

trait From<T> {
fn from(T) -> Self;
}

Deliciously simple, yes? From is very useful because it gives us a generic
way to talk about conversion from a particular type T to some other type (in
this case, “some other type” is the subject of the impl, or se1f). The crux of
From is the set of implementations provided by the standard library.

Here are a few simple examples demonstrating how From works:

let string: String = From::from("foo");
let bytes: Vec<u8> = From::from("foo");
let cow: ::std::borrow::Cow<str> = From::from("foo");

OK, so From is useful for converting between strings. But what about
errors? It turns out, there is one critical impl:

impl<'a, E: Error + 'a> From<E> for Box<Error + 'a>

This impl says that for any type that impls Error, we can convert it to a trait
object Box<Error>. This may not seem terribly surprising, but it is useful in
a generic context.

Remember the two errors we were dealing with previously? Specifically,
io::Error and num::ParseIntError. Since both impl Error, they work
with From:

use std::error::Error;
use std::fs;

use std::io;

use std::num;

// We have to jump through some hoops to actually get error values.
let io_err: io::Error = io::Error::last_os_error();
let parse_err: num::ParseIntError = "not a number".parse::<i32>().unwrap_err();

// OK, here are the conversions.
let errl: Box<Error> = From::from(io_err);
let err2: Box<Error> = From::from(parse_err);

There is a really important pattern to recognize here. Both err1 and err2
have the same type. This is because they are existentially quantified types,
or trait objects. In particular, their underlying type is erased from the

http://doc.rust-lang.org/std/convert/trait.From.html

compiler’s knowledge, so it truly sees errl and err2 as exactly the same.
Additionally, we constructed errl and err2 using precisely the same
function call: From::from. This is because From::from is overloaded on
both its argument and its return type.

This pattern is important because it solves a problem we had earlier: it gives
us a way to reliably convert errors to the same type using the same function.

Time to revisit an old friend; the try! macro.
The real try! macro

Previously, we presented this definition of try!:

macro_rules! try {
(Se:expr) => (match Se {
Ok(val) => val,
Err(err) => return Err(err),

)i

This is not its real definition. Its real definition is in the standard library:

macro_rules! try {
($e:expr) => (match $e {
Ok(val) => val,
Err(err) => return Err(::std::convert::From::from(err)),

)

There’s one tiny but powerful change: the error value is passed through
From: : from. This makes the try! macro a lot more powerful because it
gives you automatic type conversion for free.

Armed with our more powerful try! macro, let’s take a look at code we
wrote previously to read a file and convert its contents to an integer:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, String> {
let mut file = try!(File::open(file path).map err(|e| e.to string()));
let mut contents = String::new();

http://doc.rust-lang.org/std/macro.try!.html

try!(file.read to string(&mut contents).map err(|e| e.to string()));
let n = try!(contents.trim().parse::<i32>().map err(|e| e.to_string()));
ok(2 * n)

Earlier, we promised that we could get rid of the map err calls. Indeed, all
we have to do is pick a type that From works with. As we saw in the
previous section, From has an impl that lets it convert any error type into a

Box<Error>:

use std::error::Error;
use std::fs::File;

use std::io::Read;

use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, Box<Error>> {
let mut file = try!(File::open(file path));
let mut contents = String::new();
try!(file.read to_string(&mut contents));
let n = try!(contents.trim().parse::<i32>());
Ok(2 * n)

We are getting very close to ideal error handling. Our code has very little
overhead as a result from error handling because the try! macro
encapsulates three things simultaneously:

1. Case analysis.
2. Control flow.
3. Error type conversion.

When all three things are combined, we get code that is unencumbered by
combinators, calls to unwrap or case analysis.

There’s one little nit left: the Box<Error> type is opaque. If we return a
Box<Error> to the caller, the caller can’t (easily) inspect underlying error
type. The situation is certainly better than string because the caller can call
methods like description and cause, but the limitation remains:
Box<Error> 1S opaque. (N.B. This isn’t entirely true because Rust does have
runtime reflection, which is useful in some scenarios that are beyond the
scope of this section.)

It’s time to revisit our custom cliError type and tie everything together.

http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
https://crates.io/crates/error

Composing custom error types

In the last section, we looked at the real try! macro and how it does
automatic type conversion for us by calling From: : from on the error value.
In particular, we converted errors to Box<Error>, which works, but the type
1s opaque to callers.

To fix this, we use the same remedy that we’re already familiar with: a
custom error type. Once again, here is the code that reads the contents of a
file and converts it to an integer:

use std::fs::File;

use std::io::{self, Read};
use std::num;

use std::path::Path;

// We derive ~Debug” because all types should probably derive ~Debug".
// This gives us a reasonable human readable description of “CliError values.
derive (Debug
enum CliError {
Io(io::Error),
Parse(num: :ParseIntError),

}

fn file double verbose<P: AsRef<Path>>(file_path: P) -> Result<i32, CliError> {
let mut file = try!(File::open(file path).map err(CliError::Io));
let mut contents = String::new();
try!(file.read to_string(&mut contents).map err(CliError::Io));
let n: i32 = try!(contents.trim().parse().map err(CliError::Parse));
0k(2 * n)

Notice that we still have the calls to map err. Why? Well, recall the
definitions of try! and From. The problem is that there is no From impl that
allows us to convert from error types like io::Error and
num: : ParseIntError t0 our own custom cliError. Of course, it is easy to
fix this! Since we defined cliError, we can impl From with it:

use std::io;
use std::num;

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliError {
CliError::Io(err)

}

impl From<num::ParseIntError> for CliError {
fn from(err: num::ParseIntError) -> CliError {
CliError: :Parse(err)

}

All these impls are doing is teaching From how to create a CliError from
other error types. In our case, construction is as simple as invoking the
corresponding value constructor. Indeed, it is typically this easy.

We can finally rewrite file double:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file double<P: AsRef<Path>>(file path: P) -> Result<i32, CliError> {
let mut file = try!(File::open(file path));
let mut contents = String::new();
try!(file.read to_string(&mut contents));
let n: i32 = try!(contents.trim().parse());
0k(2 * n)

The only thing we did here was remove the calls to map _err. They are no
longer needed because the try! macro invokes From::from on the error
value. This works because we’ve provided From impls for all the error types
that could appear.

If we modified our file double function to perform some other operation,
say, convert a string to a float, then we’d need to add a new variant to our
error type:

use std::io;
use std::num;

enum CliError {
Io(io::Error),

ParseInt(num: :ParseIntError),
ParseFloat (num: :ParseFloatError),

And add a new From impl:

use std::num;

impl From<num::ParseFloatError> for CliError {
fn from(err: num::ParseFloatError) -> CliError {
CliError::ParseFloat(err)

}
}

And that’s it!
Adyvice for library writers

If your library needs to report custom errors, then you should probably
define your own error type. It’s up to you whether or not to expose its
representation (like Errorkind) or keep it hidden (like ParseIntError).
Regardless of how you do it, it’s usually good practice to at least provide
some information about the error beyond its string representation. But
certainly, this will vary depending on use cases.

At a minimum, you should probably implement the Error trait. This will
give users of your library some minimum flexibility for composing_errors.
Implementing the Error trait also means that users are guaranteed the
ability to obtain a string representation of an error (because it requires impls
for both fmt: :Debug and fmt: :Display).

Beyond that, it can also be useful to provide implementations of From on
your error types. This allows you (the library author) and your users to
compose more detailed errors. For example, csv::Error provides From
impls for both io: :Error and byteorder: :Error.

Finally, depending on your tastes, you may also want to define a Result
type_alias, particularly if your library defines a single error type. This is
used in the standard library for io: :Result and fmt: :Result.

Case study: A program to read population data

This section was long, and depending on your background, it might be
rather dense. While there is plenty of example code to go along with the

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://burntsushi.net/rustdoc/csv/enum.Error.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

prose, most of it was specifically designed to be pedagogical. So, we’re
going to do something new: a case study.

For this, we’re going to build up a command line program that lets you
query world population data. The objective is simple: you give it a location
and it will tell you the population. Despite the simplicity, there is a lot that
can go wrong!

The data we’ll be using comes from the Data Science Toolkit. I’ve prepared
some data from it for this exercise. You can either grab the world
population data (41MB gzip compressed, 145MB uncompressed) or only
the US population data (2.2MB gzip compressed, 7.2MB uncompressed).

Up until now, we’ve kept the code limited to Rust’s standard library. For a
real task like this though, we’ll want to at least use something to parse CSV
data, parse the program arguments and decode that stuff into Rust types
automatically. For that, we’ll use the csv, and rustc-serialize crates.

Initial setup

We’re not going to spend a lot of time on setting up a project with Cargo
because it is already covered well in the Cargo section and Cargo’s
documentation.

To get started from scratch, run cargo new --bin city-pop and make sure
your Cargo.toml looks something like this:

[package]

name = "city-pop"

version = "0.1.0"

authors ["Andrew Gallant <jamslam@gmail.com>"]

[[bin]]
name = "city-pop"

[dependencies]

csv = "0.*%"
rustc-serialize = "0.*"
getopts = "0.*"

You should already be able to run:

https://github.com/petewarden/dstkdata
http://burntsushi.net/stuff/worldcitiespop.csv.gz
http://burntsushi.net/stuff/uscitiespop.csv.gz
https://crates.io/crates/csv
https://crates.io/crates/rustc-serialize
http://doc.crates.io/guide.html

cargo build --release
./target/release/city-pop
Outputs: Hello, world!

Argument parsing

Let’s get argument parsing out of the way. We won’t go into too much detail
on Getopts, but there is some good documentation describing it. The short
story is that Getopts generates an argument parser and a help message from
a vector of options (The fact that it is a vector is hidden behind a struct and
a set of methods). Once the parsing is done, the parser returns a struct that
records matches for defined options, and remaining “free” arguments. From
there, we can get information about the flags, for instance, whether they
were passed in, and what arguments they had. Here’s our program with the
appropriate extern crate statements, and the basic argument setup for
Getopts:

extern crate getopts;
extern crate rustc_serialize;

use getopts::0Options;
use std::env;

fn print usage(program: &str, opts: Options) {

println!("{}", opts.usage(&format!("Usage: {} [options] <data-path> <city>", prog
L am)));
}

fn main() {
let args: Vec<String> = env::args().collect();
let program = &args| 0] ;

let mut opts = Options::new();
opts.optflag("h", "help", "Show this usage message.");

let matches = match opts.parse(&args[1l..]) {
Ok(m) =>{ m}
Err(e) => { panic!(e.to_string()) }
b
if matches.opt present("h") {
print usage(&program, opts);
return;
}
let data_path = &matches.free[0] ;
let city: &str = &matches.free[1] ;

// Do stuff with information

http://doc.rust-lang.org/getopts/getopts/index.html

First, we get a vector of the arguments passed into our program. We then
store the first one, knowing that it is our program’s name. Once that’s done,
we set up our argument flags, in this case a simplistic help message flag.
Once we have the argument flags set up, we use Options.parse to parse the
argument vector (starting from index one, because index O is the program
name). If this was successful, we assign matches to the parsed object, if not,
we panic. Once past that, we test if the user passed in the help flag, and if so
print the usage message. The option help messages are constructed by
Getopts, so all we have to do to print the usage message is tell it what we
want it to print for the program name and template. If the user has not
passed in the help flag, we assign the proper variables to their
corresponding arguments.

Writing the logic

We all write code differently, but error handling is usually the last thing we
want to think about. This isn’t great for the overall design of a program, but
it can be useful for rapid prototyping. Because Rust forces us to be explicit
about error handling (by making us call unwrap), it is easy to see which
parts of our program can cause errors.

In this case study, the logic is really simple. All we need to do is parse the
CSV data given to us and print out a field in matching rows. Let’s do it.
(Make sure to add extern crate csv; to the top of your file.)

use std::fs::File;

// This struct represents the data in each row of the CSV file.
// Type based decoding absolves us of a lot of the nitty gritty error
// handling, like parsing strings as integers or floats.
derive(Debug, RustcDecodable
struct Row {
country: String,
city: String,
accent_city: String,
region: String,

// Not every row has data for the population, latitude or longitude!
// So we express them as “Option” types, which admits the possibility of
// absence. The CSV parser will fill in the correct value for us.

population: Option<u64>,

latitude: Option<fé64>,

longitude: Option<f64>,
}

fn print usage(program: &str, opts: Options) {

println!("{}", opts.usage(&format!("Usage: {} [options] <data-path> <city>", prog
L am)));
}

fn main() {
let args: Vec<String> = env::args().collect();
let program = &args| 0] ;

let mut opts = Options::new();
opts.optflag("h", "help", "Show this usage message.");

let matches = match opts.parse(&args[1l..]) {
Ok(m) =>{ m}
Err(e) => { panic!(e.to_string()) }

}i

if matches.opt present("h") {
print_ usage(&program, opts);
return;

let data_path = &matches.free[0] ;
let city: &str = &matches.free[1] ;

let file = File::open(data_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);

for row in rdr.decode::<Row>() {
let row = row.unwrap();

if row.city == city {
println!("{}, {}: {:?2}",
row.city, row.country,
row.population.expect("population count"));

Let’s outline the errors. We can start with the obvious: the three places that
unwrap 1S called:

l.File::open canreturn an io: :Error.
2.csv::Reader: :decode decodes one record at a time, and decoding_a
record (look at the Item associated type on the Iterator impl) can

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
http://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html

produce a csv: :Error.
3. If row.population iS None, then calling expect will panic.

Are there any others? What if we can’t find a matching city? Tools like
grep Will return an error code, so we probably should too. So we have logic
errors specific to our problem, IO errors and CSV parsing errors. We’re
going to explore two different ways to approach handling these errors.

I’d like to start with Box<Error>. Later, we’ll see how defining our own
error type can be useful.

Error handling with Box<Error>

Box<Error> 1S nice because it just works. You don’t need to define your
own error types and you don’t need any From implementations. The
downside is that since Box<Error> is a trait object, it erases the type, which
means the compiler can no longer reason about its underlying type.

Previously we started refactoring our code by changing the type of our
function from T to Result<T, OurErrorType>. In this case, ourErrorType
is only Box<Error>. But what’s T? And can we add a return type to main?

The answer to the second question is no, we can’t. That means we’ll need to
write a new function. But what is T? The simplest thing we can do is to
return a list of matching Row values as a vec<rRow>. (Better code would
return an iterator, but that is left as an exercise to the reader.)

Let’s refactor our code into its own function, but keep the calls to unwrap.
Note that we opt to handle the possibility of a missing population count by
simply ignoring that row.

use std::path::Path;

struct Row {
// unchanged

}

struct PopulationCount {
city: String,

http://burntsushi.net/rustdoc/csv/enum.Error.html

country: String,
// This is no longer an

“Option” because values of this type are only

// constructed if they have a population count.

count: u64,

fn print usage(program: &str, opts: Options) {
println!("{}", opts.usage(&format!("Usage:

L am)));

}

{}

[options] <data-path> <city>", prog

fn search<P: AsRef<Path>>(file path: P, city: &str) -> Vec<PopulationCount> {

let
let
let
for

mut found = vec![];
file = File::open(file path).unwrap();
mut rdr =
row in rdr.decode: :<Row>() {
let row = row.unwrap();
match row.population {

None => { } // skip it

csv::Reader: :from reader(file);

Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

fn main() {
let args: Vec<String> =
let program = &args| 0]

~e

let mut opts = Options::new();
opts.optflag("h", "help",

let matches =
Ok (m)
Err(e)

= {m}
=> { panic!(e.to_string()) }

}i

if matches.opt_present("h") {
print_usage(&program, opts);
return;

let
let

data path =
city: &str =

&matches.free[0] ;
&matches.free[1] ;

for pop in search(data path, city) {

println!("{}, {}:

env::args().collect();

match opts.parse(&args[1l..]) {

"Show this usage message.");

{:?}", pop.city, pop.country, pop.count);

While we got rid of one use of expect (which is a nicer variant of unwrap),
we still should handle the absence of any search results.

To convert this to proper error handling, we need to do the following:

1. Change the return type of search to be
Result<Vec<PopulationCount>, BoxX<Error>>.

2. Use the try! macro so that errors are returned to the caller instead of
panicking the program.

3. Handle the error in main.

Let’s try it:
use std::error::Error;

// The rest of the code before this is unchanged

fn search<P: AsRef<Path>>
(file path: P, city: &str)
-> Result<Vec<PopulationCount>, Box<Error>> {
let mut found = vec![];
let file = try!(File::open(file path));
let mut rdr = csv::Reader::from reader(file);
for row in rdr.decode: :<Row>() {
let row = try!(row);
match row.population {
None => { } // skip it
Some (count) => if row.city == city {
found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,
P
b
}
}
if found.is_empty() {
Err(From::from("No matching cities with a population were found."))
} else {
Ok (found)

}

Instead of x.unwrap(), we now have try! (x). Since our function returns a
Result<T, E>, the try! macro will return early from the function if an
eITOr OCCUrS.

At the end of search we also convert a plain string to an error type by using
the corresponding From impls:

// We are making use of this impl in the code above, since we call “From::from"
// on a “&'static str-.
impl<'a> From<&'a str> for Box<Error>

// But this is also useful when you need to allocate a new string for an
// error message, usually with “format!".
impl From<String> for Box<Error>

Since search now returns a Result<T, E>, main should use case analysis
when calling search:

match search(data path, city) {
Ok(pops) => {
for pop in pops {
println!("{}, {}: {:?}", pop.city, pop.country, pop.count);
}
}

Err(err) => println!("{}", err)

Now that we’ve seen how to do proper error handling with Box<Error>,
let’s try a different approach with our own custom error type. But first, let’s
take a quick break from error handling and add support for reading from
stdin.

Reading from stdin

In our program, we accept a single file for input and do one pass over the
data. This means we probably should be able to accept input on stdin. But
maybe we like the current format too—so let’s have both!

Adding support for stdin is actually quite easy. There are only three things
we have to do:

1. Tweak the program arguments so that a single parameter—the city —
can be accepted while the population data is read from stdin.

2. Modify the program so that an option -£ can take the file, if it is not
passed into stdin.

http://doc.rust-lang.org/std/convert/trait.From.html

3. Modify the search function to take an optional file path. When None, it
should know to read from stdin.

First, here’s the new usage:

fn print usage(program: &str, opts: Options) {
println!("{}", opts.usage(&format!("Usage: {} [options] <city>", program)));

}

Of course we need to adapt the argument handling code:

let mut opts = Options::new();
opts.optopt("f", "file", "Choose an input file, instead of using STDIN.", "NAME")
opts.optflag("h", "help", "Show this usage message.");

let data path = matches.opt str("f");

let city = if !matches.free.is empty() {
&matches.free[0]

} else {
print_usage(&program, opts);
return;

bi

match search(&data_path, city) {
Ok(pops) => {
for pop in pops {
printin!("{}, {}: {:?2}", pop.city, pop.country, pop.count);
}
}

Err(err) => println!("{}", err)

We’ve made the user experience a bit nicer by showing the usage message,
instead of a panic from an out-of-bounds index, when city, the remaining
free argument, is not present.

Modifying search is slightly trickier. The csv crate can build a parser out
of any_type that implements io::Read. But how can we use the same code
over both types? There’s actually a couple ways we could go about this.
One way is to write search such that it is generic on some type parameter R

that satisfies io: :Read. Another way is to use trait objects:

http://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader

use std::io;
// The rest of the code before this is unchanged

fn search<P: AsRef<Path>>
(file path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, Box<Error>> {
let mut found = vec![];
let input: Box<io::Read> = match *file path {
None => Box::new(io::stdin()),
Some(ref file path) => Box::new(try!(File::open(file path))),
b
let mut rdr = csv::Reader::from reader (input);
// The rest remains unchanged!

Error handling with a custom type

Previously, we learned how to compose errors using_a custom error type.
We did this by defining our error type as an enum and implementing Error
and From.

Since we have three distinct errors (I0, CSV parsing and not found), let’s
define an enum with three variants:

derive (Debug
enum CliError {
Io(io::Error),
Csv(csv::Error),
NotFound,

And now for impls on Display and Error:

use std::fmt;

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
CliError::Io(ref err) => err.fmt(f),
CliError::Csv(ref err) => err.fmt(f),
CliError::NotFound => write!(f, "No matching cities with a \
population were found."),

}

impl Error for CliError {
fn description(&self) -> &str {

match *self {
CliError::Io(ref err) => err.description(),
CliError::Csv(ref err) => err.description(),
CliError: :NotFound => "not found",

}

fn cause(&self) -> Option<&Error> {
match *self {
CliError::Io(ref err) => Some(err),
CliError::Csv(ref err) => Some(err),
// Our custom error doesn't have an underlying cause,
// but we could modify it so that it does.
CliError::NotFound => None,

Before we can use our CliError type in our search function, we need to
provide a couple From impls. How do we know which impls to provide?
Well, we’ll need to convert from both io::Error and csv::Error to
clikError. Those are the only external errors, so we’ll only need two From
impls for now:

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliError {
CliError::Io(err)
}
}

impl From<csv::Error> for CliError {
fn from(err: csv::Error) -> CliError {
CliError::Csv(err)

}

The From impls are important because of how try! is defined. In particular,
if an error occurs, From: : from is called on the error, which in this case, will
convert it to our own error type CliError.

With the From impls done, we only need to make two small tweaks to our
search function: the return type and the “not found” error. Here it is in full:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, CliError> {
let mut found = vec![];
let input: Box<io::Read> = match *file path {
None => Box::new(io::stdin()),

Some(ref file path) => Box::new(try!(File::open(file path))),
b
let mut rdr = csv::Reader::from reader(input);
for row in rdr.decode::<Row>() {
let row = try!(row);
match row.population {
None => { } // skip it
Some (count) => if row.city == city {
found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,
P
b
}
}
if found.is empty() {
Err(CliError: :NotFound)
} else {
Ok (found)

}

No other changes are necessary.
Adding functionality

Writing generic code is great, because generalizing stuff is cool, and it can
then be useful later. But sometimes, the juice isn’t worth the squeeze. Look
at what we just did in the previous step:

1. Defined a new error type.
2. Added impls for Error, Display and two for From.

The big downside here is that our program didn’t improve a whole lot.
There is quite a bit of overhead to representing errors with enums, especially
in short programs like this.

One useful aspect of using a custom error type like we’ve done here is that
the main function can now choose to handle errors differently. Previously,
with Box<Error>, it didn’t have much of a choice: just print the message.
We’re still doing that here, but what if we wanted to, say, add a --quiet
flag? The --quiet flag should silence any verbose output.

Right now, if the program doesn’t find a match, it will output a message
saying so. This can be a little clumsy, especially if you intend for the
program to be used in shell scripts.

So let’s start by adding the flags. Like before, we need to tweak the usage
string and add a flag to the Option variable. Once we’ve done that, Getopts
does the rest:

let mut opts = Options::new();

opts.optopt("f", "file", "Choose an input file, instead of using STDIN.", "NAME")
opts.optflag("h", "help", "Show this usage message.");
opts.optflag("q", "quiet", "Silences errors and warnings.");

Now we only need to implement our “quiet” functionality. This requires us
to tweak the case analysis in main:

use std::process;

match search(&data path, city) {
Err(CliError::NotFound) if matches.opt present("q") => process::exit(1l),
Err(err) => panic!("{}", err),
Ok (pops) => for pop in pops {
printlin!("{}, {}: {:2}", pop.city, pop.country, pop.count);
}

Certainly, we don’t want to be quiet if there was an IO error or if the data
failed to parse. Therefore, we use case analysis to check if the error type is
NotFound and if --quiet has been enabled. If the search failed, we still quit
with an exit code (following grep’s convention).

If we had stuck with Box<Error>, then it would be pretty tricky to
implement the --quiet functionality.

This pretty much sums up our case study. From here, you should be ready
to go out into the world and write your own programs and libraries with
proper error handling.

The Short Story

Since this section is long, it is useful to have a quick summary for error
handling in Rust. These are some good “rules of thumb.” They are
emphatically not commandments. There are probably good reasons to break
every one of these heuristics!

e If you’re writing short example code that would be overburdened by
error handling, it’s probably fine to use unwrap (whether that’s
Result: :unwrap, Option::unwrap OI preferably Option: :expect).
Consumers of your code should know to use proper error handling. (If
they don’t, send them here!)

e [If you’re writing a quick ‘n’ dirty program, don’t feel ashamed if you
use unwrap. Be warned: if it winds up in someone else’s hands, don’t
be surprised if they are agitated by poor error messages!

e If you're writing a quick ‘n’ dirty program and feel ashamed about
panicking anyway, then use either a string or a Box<Error> for your
error type.

e Otherwise, in a program, define your own error types with appropriate
From and Error impls to make the try! macro more ergonomic.

e If you’re writing a library and your code can produce errors, define
your own error type and implement the std::error::Error trait.
Where appropriate, implement From to make both your library code
and the caller’s code easier to write. (Because of Rust’s coherence
rules, callers will not be able to impl From on your error type, so your
library should do it.)

e [earn the combinators defined on oOption and Result. Using them
exclusively can be a bit tiring at times, but I’ve personally found a
healthy mix of try! and combinators to be quite appealing. and_then,
map and unwrap_or are my favorites.

Choosing your Guarantees

One important feature of Rust is that it lets us control the costs and
guarantees of a program.

There are various “wrapper type” abstractions in the Rust standard library
which embody a multitude of tradeoffs between cost, ergonomics, and

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/enum.Result.html

guarantees. Many let one choose between run time and compile time
enforcement. This section will explain a few selected abstractions in detail.

Before proceeding, it is highly recommended that one reads about
ownership and borrowing in Rust.

Basic pointer types
Box<T>

Box<T> is an “owned” pointer, or a “box”. While it can hand out references
to the contained data, it is the only owner of the data. In particular, consider
the following:

let x = Box::new(l);
let y = x;
// x no longer accessible here

Here, the box was moved into y. As x no longer owns it, the compiler will
no longer allow the programmer to use x after this. A box can similarly be
moved out of a function by returning it.

When a box (that hasn’t been moved) goes out of scope, destructors are run.
These destructors take care of deallocating the inner data.

This is a zero-cost abstraction for dynamic allocation. If you want to
allocate some memory on the heap and safely pass around a pointer to that
memory, this is ideal. Note that you will only be allowed to share references
to this by the regular borrowing rules, checked at compile time.

&T and smut T

These are immutable and mutable references respectively. They follow the
“read-write lock™ pattern, such that one may either have only one mutable
reference to some data, or any number of immutable ones, but not both.
This guarantee is enforced at compile time, and has no visible cost at

http://doc.rust-lang.org/std/boxed/struct.Box.html

runtime. In most cases these two pointer types suffice for sharing cheap
references between sections of code.

These pointers cannot be copied in such a way that they outlive the lifetime
associated with them.

*const T and *mut T

These are C-like raw pointers with no lifetime or ownership attached to
them. They point to some location in memory with no other restrictions.
The only guarantee that these provide is that they cannot be dereferenced
except in code marked unsafe.

These are useful when building safe, low cost abstractions like vec<T>, but
should be avoided in safe code.

Rc<T>

This is the first wrapper we will cover that has a runtime cost.

Rc<T> is a reference counted pointer. In other words, this lets us have
multiple “owning” pointers to the same data, and the data will be dropped
(destructors will be run) when all pointers are out of scope.

Internally, it contains a shared “reference count” (also called “refcount”),
which is incremented each time the Rc 1s cloned, and decremented each
time one of the rRes goes out of scope. The main responsibility of Re<T> is to
ensure that destructors are called for shared data.

The internal data here is immutable, and if a cycle of references is created,
the data will be leaked. If we want data that doesn’t leak when there are
cycles, we need a garbage collector.

Guarantees

http://doc.rust-lang.org/std/rc/struct.Rc.html

The main guarantee provided here is that the data will not be destroyed until
all references to it are out of scope.

This should be used when we wish to dynamically allocate and share some
data (read-only) between various portions of your program, where it is not
certain which portion will finish using the pointer last. It’s a viable
alternative to &T when &T is either impossible to statically check for
correctness, or creates extremely unergonomic code where the programmer
does not wish to spend the development cost of working with.

This pointer is not thread safe, and Rust will not let it be sent or shared with
other threads. This lets one avoid the cost of atomics in situations where
they are unnecessary.

There is a sister smart pointer to this one, weak<T>. This is a non-owning,
but also non-borrowed, smart pointer. It is also similar to &T, but it is not
restricted in lifetime—a weak<T> can be held on to forever. However, it is
possible that an attempt to access the inner data may fail and return None,
since this can outlive the owned Rres. This is useful for cyclic data structures
and other things.

Cost

As far as memory goes, Re<T> is a single allocation, though it will allocate
two extra words (i.e. two usize values) as compared to a regular Box<T>
(for “strong” and “weak” refcounts).

Re<T> has the computational cost of incrementing/decrementing the
refcount whenever it is cloned or goes out of scope respectively. Note that a
clone will not do a deep copy, rather it will simply increment the inner
reference count and return a copy of the Re<T>.

Cell types

cells provide interior mutability. In other words, they contain data which
can be manipulated even if the type cannot be obtained in a mutable form

(for example, when it is behind an &-ptr or Re<T>).

The documentation for the cell_module has a pretty good explanation for
these.

These types are generally found in struct fields, but they may be found
elsewhere too.

Cell<T>

Cell<T> is a type that provides zero-cost interior mutability, but only for
copy types. Since the compiler knows that all the data owned by the
contained value is on the stack, there’s no worry of leaking any data behind
references (or worse!) by simply replacing the data.

It is still possible to violate your own invariants using this wrapper, so be
careful when using it. If a field is wrapped in cell, it’s a nice indicator that
the chunk of data is mutable and may not stay the same between the time
you first read it and when you intend to use it.

use std::cell::Cell;

let x Cell::new(l);
let y &X;

let z = &x;

x.set(2);

y.set(3);

z.set(4);

println!("{}", x.get());

Note that here we were able to mutate the same value from various
immutable references.

This has the same runtime cost as the following:

let mut x = 1;

let y &mut x;
let z &mut x;

X = 23

*y = 3;

*z = 4;
println!("{}", x);

http://doc.rust-lang.org/std/cell/index.html
http://doc.rust-lang.org/std/cell/struct.Cell.html

but it has the added benefit of actually compiling successfully.

Guarantees

This relaxes the “no aliasing with mutability” restriction in places where it’s
unnecessary. However, this also relaxes the guarantees that the restriction
provides; so if your invariants depend on data stored within cell, you
should be careful.

This is useful for mutating primitives and other copy types when there is no
easy way of doing it in line with the static rules of & and smut.

cell does not let you obtain interior references to the data, which makes it
safe to freely mutate.

Cost

There is no runtime cost to using cell<T>, however if you are using it to
wrap larger (copy) structs, it might be worthwhile to instead wrap
individual fields in cel1<T> since each write is otherwise a full copy of the
struct.

RefCell<T>

RefCell<T> also provides interior mutability, but isn’t restricted to copy
types.

Instead, it has a runtime cost. Refcell<T> enforces the read-write lock
pattern at runtime (it’s like a single-threaded mutex), unlike &T/smut T
which do so at compile time. This is done by the borrow() and
borrow mut() functions, which modify an internal reference count and
return smart pointers which can be dereferenced immutably and mutably
respectively. The refcount is restored when the smart pointers go out of
scope. With this system, we can dynamically ensure that there are never any

http://doc.rust-lang.org/std/cell/struct.RefCell.html

other borrows active when a mutable borrow is active. If the programmer
attempts to make such a borrow, the thread will panic.

use std::cell::RefCell;

let x = RefCell::new(vec![1,2,3,4]);
{

println!("{:?}", *x.borrow())

}

{

let mut my ref = x.borrow mut();
my ref.push(l);
}

Similar to cell, this is mainly useful for situations where it’s hard or
impossible to satisfy the borrow checker. Generally we know that such
mutations won’t happen in a nested form, but it’s good to check.

For large, complicated programs, it becomes useful to put some things in
RefCells to make things simpler. For example, a lot of the maps in the ctxt
struct in the Rust compiler internals are inside this wrapper. These are only
modified once (during creation, which is not right after initialization) or a
couple of times in well-separated places. However, since this struct is
pervasively used everywhere, juggling mutable and immutable pointers
would be hard (perhaps impossible) and probably form a soup of s&-ptrs
which would be hard to extend. On the other hand, the Refcell provides a
cheap (not zero-cost) way of safely accessing these. In the future, if
someone adds some code that attempts to modify the cell when it’s already
borrowed, it will cause a (usually deterministic) panic which can be traced
back to the offending borrow.

Similarly, in Servo’s DOM there is a lot of mutation, most of which is local
to a DOM type, but some of which crisscrosses the DOM and modifies
various things. Using Refcell and cell to guard all mutation lets us avoid
worrying about mutability everywhere, and it simultaneously highlights the
places where mutation is actually happening.

Note that rRefcell should be avoided if a mostly simple solution is possible
with & pointers.

Guarantees

RefcCell relaxes the static restrictions preventing aliased mutation, and
replaces them with dynamic ones. As such the guarantees have not changed.

Cost

Refcell does not allocate, but it contains an additional “borrow state”
indicator (one word in size) along with the data.

At runtime each borrow causes a modification/check of the refcount.
Synchronous types

Many of the types above cannot be used in a threadsafe manner.
Particularly, Re<T> and Refcell<T>, which both use non-atomic reference
counts (atomic reference counts are those which can be incremented from
multiple threads without causing a data race), cannot be used this way. This
makes them cheaper to use, but we need thread safe versions of these too.
They exist, in the form of Arc<T> and Mutex<T>/RwLock<T>

Note that the non-threadsafe types cannot be sent between threads, and this
is checked at compile time.

There are many useful wrappers for concurrent programming in the sync
module, but only the major ones will be covered below.

Arc<T>

Arc<T> iS a version of Re<T> that uses an atomic reference count (hence,
“Arc”). This can be sent freely between threads.

C++’s shared ptr is similar to Arc, however in the case of C++ the inner
data is always mutable. For semantics similar to that from C++, we should
use Arc<Mutex<T>>, Arc<RwLock<T>>, or Arc<UnsafeCell<T>>§

http://doc.rust-lang.org/std/sync/index.html
http://doc.rust-lang.org/std/sync/struct.Arc.html

(unsafecell<T> is a cell type that can be used to hold any data and has no
runtime cost, but accessing it requires unsafe blocks). The last one should
only be used if we are certain that the usage won’t cause any memory
unsafety. Remember that writing to a struct is not an atomic operation, and
many functions like vec.push() can reallocate internally and cause unsafe
behavior, so even monotonicity may not be enough to justify unsafecell.

Guarantees

Like rc, this provides the (thread safe) guarantee that the destructor for the
internal data will be run when the last arc goes out of scope (barring any
cycles).

Cost

This has the added cost of using atomics for changing the refcount (which
will happen whenever it is cloned or goes out of scope). When sharing data
from an aArc in a single thread, it is preferable to share & pointers whenever
possible.

Mutex<T> and RwLock<T>

Mutex<T> and RwLock<T> provide mutual-exclusion via RAII guards
(guards are objects which maintain some state, like a lock, until their
destructor is called). For both of these, the mutex is opaque until we call
lock() on it, at which point the thread will block until a lock can be
acquired, and then a guard will be returned. This guard can be used to
access the inner data (mutably), and the lock will be released when the
guard goes out of scope.

{

let guard = mutex.lock();
// guard dereferences mutably to the inner type
*guard += 1;

} // lock released when destructor runs

http://doc.rust-lang.org/std/sync/struct.Mutex.html
http://doc.rust-lang.org/std/sync/struct.RwLock.html

RwLock has the added benefit of being efficient for multiple reads. It is
always safe to have multiple readers to shared data as long as there are no
writers; and RwLock lets readers acquire a “read lock”. Such locks can be
acquired concurrently and are kept track of via a reference count. Writers
must obtain a “write lock” which can only be obtained when all readers
have gone out of scope.

Guarantees

Both of these provide safe shared mutability across threads, however they
are prone to deadlocks. Some level of additional protocol safety can be
obtained via the type system.

Costs

These use internal atomic-like types to maintain the locks, which are pretty
costly (they can block all memory reads across processors till they’re done).
Waiting on these locks can also be slow when there’s a lot of concurrent
access happening.

Composition

A common gripe when reading Rust code is with types like
Rc<RefCell<Vec<T>>> (or even more complicated compositions of such
types). It’s not always clear what the composition does, or why the author
chose one like this (and when one should be using such a composition in
one’s own code)

Usually, it’s a case of composing together the guarantees that you need,
without paying for stuff that is unnecessary.

For example, Re<rRefCell<T>> is one such composition. Re<T> itself can’t
be dereferenced mutably; because Rc<T> provides sharing and shared
mutability can lead to unsafe behavior, so we put Refcell<T> inside to get
dynamically verified shared mutability. Now we have shared mutable data,

but it’s shared in a way that there can only be one mutator (and no readers)
or multiple readers.

Now, we can take this a step further, and have Rc<rRefCell<vec<T>>> oOr
Rc<Vec<RefCell<T>>>. These are both shareable, mutable vectors, but
they’re not the same.

With the former, the Refcell<T> is wrapping the vec<T>, so the vec<T> in
its entirety is mutable. At the same time, there can only be one mutable
borrow of the whole vec at a given time. This means that your code cannot
simultaneously work on different elements of the vector from different rc
handles. However, we are able to push and pop from the vec<T> at will.
This is similar to a smut vec<T> with the borrow checking done at runtime.

With the latter, the borrowing is of individual elements, but the overall
vector is immutable. Thus, we can independently borrow separate elements,
but we cannot push or pop from the vector. This is similar to a smut [T]4,
but, again, the borrow checking is at runtime.

In concurrent programs, we have a similar situation with Arc<Mutex<T>>,
which provides shared mutability and ownership.

When reading code that uses these, go in step by step and look at the
guarantees/costs provided.

When choosing a composed type, we must do the reverse; figure out which
guarantees we want, and at which point of the composition we need them.
For example, if there is a choice between vec<RefCell<T>> and
RefCell<vVec<T>>, we should figure out the tradeoffs as done above and
pick one.

FFI

Introduction

This guide will use the snappy compression/decompression library as an
introduction to writing bindings for foreign code. Rust is currently unable to
call directly into a C++ library, but snappy includes a C interface
(documented in snappy-c.h).

A note about libc
Many of these examples use the 1ibc_crate, which provides various type

definitions for C types, among other things. If you’re trying these examples
yourself, you’ll need to add 1ibc to your Cargo.toml:

[dependencies]
libc = "0.2.0"

and add extern crate libc; to your crate root.
Calling foreign functions

The following is a minimal example of calling a foreign function which will
compile if snappy is installed:

extern crate libc;
use libc::size t;

link(name "snappy"
extern {
fn snappy max compressed length(source length: size t) -> size t;

}

fn main() {
let x = unsafe { snappy max_compressed length(100) };
println!("max compressed length of a 100 byte buffer: {}", x);
}

The extern block is a list of function signatures in a foreign library, in this
case with the platform’s C ABI. The #[1link(...)] attribute is used to
instruct the linker to link against the snappy library so the symbols are
resolved.

Foreign functions are assumed to be unsafe so calls to them need to be
wrapped with unsafe {} as a promise to the compiler that everything

https://github.com/google/snappy
https://github.com/google/snappy/blob/master/snappy-c.h
https://crates.io/crates/libc

contained within truly is safe. C libraries often expose interfaces that aren’t
thread-safe, and almost any function that takes a pointer argument isn’t
valid for all possible inputs since the pointer could be dangling, and raw
pointers fall outside of Rust’s safe memory model.

When declaring the argument types to a foreign function, the Rust compiler
can not check if the declaration is correct, so specifying it correctly is part
of keeping the binding correct at runtime.

The extern block can be extended to cover the entire snappy API:

extern crate libc;
use libc::{c_int, size_t};

link(name "snappy"
extern {
fn snappy compress(input: *const u8,
input length: size t,
compressed: *mut u8,
compressed_length: *mut size t) -> c_int;
fn snappy_uncompress(compressed: *const u8,
compressed_length: size t,
uncompressed: *mut u8,
uncompressed_length: *mut size t) -> c_int;
fn snappy max compressed length(source length: size t) -> size t;
fn snappy uncompressed length(compressed: *const u8,
compressed_length: size t,
result: *mut size_t) -> c_int;
fn snappy validate compressed buffer(compressed: *const u8,
compressed_length: size t) -> c_int;

Creating a safe interface

The raw C API needs to be wrapped to provide memory safety and make
use of higher-level concepts like vectors. A library can choose to expose
only the safe, high-level interface and hide the unsafe internal details.

Wrapping the functions which expect buffers involves using the
slice::raw module to manipulate Rust vectors as pointers to memory.
Rust’s vectors are guaranteed to be a contiguous block of memory. The
length is number of elements currently contained, and the capacity is the
total size in elements of the allocated memory. The length is less than or
equal to the capacity.

pub fn validate compressed buffer(src: & u8]) -> bool {
unsafe {
snappy_validate compressed buffer(src.as ptr(), src.len() as size t) ==

}

The validate compressed buffer wrapper above makes use of an unsafe
block, but it makes the guarantee that calling it is safe for all inputs by
leaving off unsafe from the function signature.

The snappy compress and snappy uncompress functions are more
complex, since a buffer has to be allocated to hold the output too.

The snappy max compressed length function can be used to allocate a
vector with the maximum required capacity to hold the compressed output.
The vector can then be passed to the snappy compress function as an
output parameter. An output parameter is also passed to retrieve the true
length after compression for setting the length.

pub fn compress(src: & u8]) -> Vec<u8> {
unsafe {
let srclen = src.len() as size t;
let psrc = src.as _ptr();

let mut dstlen = snappy max_ compressed length(srclen);
let mut dst = Vec::with capacity(dstlen as usize);
let pdst = dst.as_mut ptr();

snappy_compress(psrc, srclen, pdst, &mut dstlen);
dst.set len(dstlen as usize);
dst

Decompression is similar, because snappy stores the uncompressed size as
part of the compression format and snappy uncompressed length will
retrieve the exact buffer size required.

pub fn uncompress(src: & u8]) -> Option<Vec<u8>> {
unsafe {
let srclen = src.len() as size t;
let psrc = src.as_ptr();

let mut dstlen: size t = 0;
snappy_uncompressed_length(psrc, srclen, &mut dstlen);

let mut dst = Vec::with capacity(dstlen as usize);

let pdst = dst.as mut ptr();

if snappy uncompress(psrc, srclen, pdst, &mut dstlen) == 0 {
dst.set len(dstlen as usize);
Some (dst)

} else {

None // SNAPPY INVALID INPUT
}

Then, we can add some tests to show how to use them.

cfg(test
mod tests {
use super::*;

test
fn valid() {
let d = vec![O0xde, Oxad, 0xd0, 0x0d] ;
let c: & u8] = &compress(&d);
assert!(validate_compressed_buffer(c));
assert!(uncompress(c) == Some(d));

test
fn invalid() {
let d = vec![0, 0, 0, 0];
assert!(!validate compressed buffer(&d));
assert!(uncompress(&d).is _none());

test

fn empty() {
let d = vec![];
assert!(!validate compressed buffer(&d));
assert!(uncompress(&d).is_none());
let ¢ = compress(&d);
assert!(validate compressed buffer(&c));
assert!(uncompress(&c) == Some(d));

Destructors

Foreign libraries often hand off ownership of resources to the calling code.
When this occurs, we must use Rust’s destructors to provide safety and
guarantee the release of these resources (especially in the case of panic).

For more about destructors, see the Drop trait.

http://doc.rust-lang.org/std/ops/trait.Drop.html

Callbacks from C code to Rust functions

Some external libraries require the usage of callbacks to report back their
current state or intermediate data to the caller. It is possible to pass
functions defined in Rust to an external library. The requirement for this is
that the callback function is marked as extern with the correct calling
convention to make it callable from C code.

The callback function can then be sent through a registration call to the C
library and afterwards be invoked from there.

A basic example is:

Rust code:

extern fn callback(a: i32) {
println!("I'm called from C with value {0}", a);

}

link(name "extlib"
extern {
fn register callback(cb: extern fn(i32)) -> i32;
fn trigger callback();

}

fn main() {
unsafe {
register_ callback(callback);
trigger callback(); // Triggers the callback

C code:

typedef void (*rust_callback) (int32 t);
rust_callback cb;

int32 t register_ callback(rust_callback callback) {
cb = callback;
return 1;

}

void trigger_ callback() {
cb(7); // wWill call callback(7) in Rust

}

In this example Rust’s main() will call trigger callback() in C, which
would, in turn, call back to callback() in Rust.

Targeting callbacks to Rust objects

The former example showed how a global function can be called from C
code. However it is often desired that the callback is targeted to a special
Rust object. This could be the object that represents the wrapper for the
respective C object.

This can be achieved by passing an raw pointer to the object down to the C
library. The C library can then include the pointer to the Rust object in the
notification. This will allow the callback to unsafely access the referenced
Rust object.

Rust code:

repr(C
struct RustObject {
a: i32,
// other members

}

extern "C" fn callback(target: *mut RustObject, a: i32) {
println!("I'm called from C with value {0}", a);
unsafe {
// Update the value in RustObject with the value received from the callback
(*target).a = a;

}
}
link(name "extlib"
extern {
fn register callback(target: *mut RustObject,

cb: extern fn(*mut RustObject, i32)) -> i32;
fn trigger callback();
}

fn main() {
// Create the object that will be referenced in the callback
let mut rust object = Box::new(RustObject { a: 5 });

unsafe {
register callback(&mut *rust object, callback);
trigger callback();

C code:

typedef void (*rust_callback) (void*, int32_t);
void* cb_target;
rust_callback cb;

int32_t register callback(void* callback_ target, rust_callback callback) {
cb _target = callback target;
cb = callback;
return 1;

}

void trigger callback() {
cb(cb_target, 7); // will call callback(&rustObject, 7) in Rust

}

Asynchronous callbacks

In the previously given examples the callbacks are invoked as a direct
reaction to a function call to the external C library. The control over the
current thread is switched from Rust to C to Rust for the execution of the
callback, but in the end the callback is executed on the same thread that
called the function which triggered the callback.

Things get more complicated when the external library spawns its own
threads and invokes callbacks from there. In these cases access to Rust data
structures inside the callbacks 1s especially unsafe and proper
synchronization —mechanisms must be wused. Besides classical
synchronization mechanisms like mutexes, one possibility in Rust is to use
channels (in std::sync::mpsc) to forward data from the C thread that
invoked the callback into a Rust thread.

If an asynchronous callback targets a special object in the Rust address
space it is also absolutely necessary that no more callbacks are performed
by the C library after the respective Rust object gets destroyed. This can be
achieved by unregistering the callback in the object’s destructor and
designing the library in a way that guarantees that no callback will be
performed after deregistration.

Linking

The 1ink attribute on extern blocks provides the basic building block for
instructing rustc how it will link to native libraries. There are two accepted
forms of the link attribute today:

® #[link(name

® #[link(name

"foo")]

"foo", kind = "bar")]

In both of these cases, foo is the name of the native library that we’re
linking to, and in the second case bar is the type of native library that the
compiler is linking to. There are currently three known types of native
libraries:

. I)ynanﬁc-—#[link(name = "readline")]

e Static - #[link(name = "my build dependency", kind =
"static")]

e Frameworks - #[link(name = "CoreFoundation", kind =
"framework")]

Note that frameworks are only available on OSX targets.

The different kind values are meant to differentiate how the native library
participates in linkage. From a linkage perspective, the Rust compiler
creates two flavors of artifacts: partial (rlib/staticlib) and final
(dylib/binary). Native dynamic library and framework dependencies are
propagated to the final artifact boundary, while static library dependencies
are not propagated at all, because the static libraries are integrated directly
into the subsequent artifact.

A few examples of how this model can be used are:

e A native build dependency. Sometimes some C/C++ glue is needed
when writing some Rust code, but distribution of the C/C++ code in a
library format is a burden. In this case, the code will be archived into
libfoo.a and then the Rust crate would declare a dependency via #

[link(name = "foo", kind = "static")].

Regardless of the flavor of output for the crate, the native static library
will be included in the output, meaning that distribution of the native
static library is not necessary.

e A normal dynamic dependency. Common system libraries (like
readline) are available on a large number of systems, and often a
static copy of these libraries cannot be found. When this dependency is
included in a Rust crate, partial targets (like rlibs) will not link to the
library, but when the rlib is included in a final target (like a binary), the
native library will be linked in.

On OSX, frameworks behave with the same semantics as a dynamic library.

Unsafe blocks

Some operations, like dereferencing raw pointers or calling functions that
have been marked unsafe are only allowed inside unsafe blocks. Unsafe
blocks isolate unsafety and are a promise to the compiler that the unsafety
does not leak out of the block.

Unsafe functions, on the other hand, advertise it to the world. An unsafe
function 1s written like this:

unsafe fn kaboom(ptr: *const i32) -> i32 { *ptr }

This function can only be called from an unsafe block or another unsafe
function.

Accessing foreign globals

Foreign APIs often export a global variable which could do something like
track global state. In order to access these variables, you declare them in
extern blocks with the static keyword:

extern crate libc;

link(name "readline"
extern {
static rl_readline_version: Iibc::c_int;

}

fn main() {
println!("You have readline version {} installed.",
rl readline version as i32);

Alternatively, you may need to alter global state provided by a foreign
interface. To do this, statics can be declared with mut so we can mutate
them.

extern crate libc;

use std::ffi::CString;
use std::ptr;

link(name "readline"
extern {
static mut rl prompt: *const libc::c_char;

}
fn main() {
let prompt = CString::new("[my-awesome-shell] $").unwrap();
unsafe {
rl prompt = prompt.as ptr();

printin!("{:?}", rl prompt);

rl prompt = ptr::null();

Note that all interaction with a static mut is unsafe, both reading and
writing. Dealing with global mutable state requires a great deal of care.

Foreign calling conventions

Most foreign code exposes a C ABI, and Rust uses the platform’s C calling
convention by default when calling foreign functions. Some foreign
functions, most notably the Windows API, use other calling conventions.
Rust provides a way to tell the compiler which convention to use:

extern crate libc;

cfg(all(target_os "win32", target_arch "x86"
link(name "kernel32"
allow(non_snake_ case

extern "stdcall" {
fn SetEnvironmentVariableA(n: *const u8, v: *const u8) -> libc::c_int;

}

This applies to the entire extern block. The list of supported ABI
constraints are:

¢ stdcall

® aapcs

® cdecl

¢ fastcall

e vectorcall This is currently hidden behind the abi vectorcall gate
and 1s subject to change.

® Rust

® rust-intrinsic

¢ system

e C

® winé64

Most of the abis in this list are self-explanatory, but the system abi may
seem a little odd. This constraint selects whatever the appropriate ABI is for
interoperating with the target’s libraries. For example, on win32 with a x86
architecture, this means that the abi used would be stdcall. On x86_64,
however, windows uses the ¢ calling convention, so ¢ would be used. This
means that in our previous example, we could have used extern "system"
{ ... }todefine a block for all windows systems, not only x86 ones.

Interoperability with foreign code

Rust guarantees that the layout of a struct is compatible with the
platform’s representation in C only if the #[repr(C)] attribute is applied to
it. #[repr(C, packed)] can be used to lay out struct members without
padding. #[repr (C)] can also be applied to an enum.

Rust’s owned boxes (Box<T>) use non-nullable pointers as handles which
point to the contained object. However, they should not be manually created
because they are managed by internal allocators. References can safely be

assumed to be non-nullable pointers directly to the type. However, breaking
the borrow checking or mutability rules is not guaranteed to be safe, so
prefer using raw pointers (*) if that’s needed because the compiler can’t
make as many assumptions about them.

Vectors and strings share the same basic memory layout, and utilities are
available in the vec and str modules for working with C APIs. However,
strings are not terminated with \o0. If you need a NUL-terminated string for
interoperability with C, you should use the cstring type in the std::£ffi
module.

The 1ibc_crate on crates.io includes type aliases and function definitions for
the C standard library in the 1ibc module, and Rust links against 1ibc and
libm by default.

The *“nullable pointer optimization”

Certain Rust types are defined to never be null. This includes references
(&T, smut T), boxes (Box<T>), and function pointers (extern "abi" £n()).
When interfacing with C, pointers that might be null are often used, which
would seem to require some messy transmutes and/or unsafe code to
handle conversions to/from Rust types. However, the language provides a
workaround.

As a special case, an enum is eligible for the “nullable pointer optimization”
if it contains exactly two variants, one of which contains no data and the
other contains a field of one of the non-nullable types listed above. This
means no extra space is required for a discriminant; rather, the empty
variant is represented by putting a null value into the non-nullable field.
This is called an ‘“optimization”, but unlike other optimizations it is
guaranteed to apply to eligible types.

The most common type that takes advantage of the nullable pointer
optimization 1S Option<T>, where None corresponds to null. So
Option<extern "C" fn(c_int) -> c_int> 1S a correct way to represent a

https://crates.io/crates/libc

nullable function pointer using the C ABI (corresponding to the C type int
(*) (int)).

Here is a contrived example. Let’s say some C library has a facility for
registering a callback, which gets called in certain situations. The callback
is passed a function pointer and an integer and it is supposed to run the
function with the integer as a parameter. So we have function pointers
flying across the FFI boundary in both directions.

extern crate libc;
use libc::c_int;

extern "C" {

/// Register the callback.

fn register(cb: Option<extern "C" fn(Option<extern "C" fn(c_int) -> c_int>, c_int
L -> c_ int>);

}

/// This fairly useless function receives a function pointer and an integer
/// from C, and returns the result of calling the function with the integer.
/// In case no function is provided, it squares the integer by default.
extern "C" fn apply(process: Option<extern "C" fn(c_int) -> c_int>, int: c_int) -> c_
L nt {
match process {
Some(f) => f(int),
None => int * int

}

fn main() {
unsafe {
register(Some(apply));
}

And the code on the C side looks like this:

void register(void (*f)(void (*)(int), int)) {

}

No transmute required!

Calling Rust code from C

You may wish to compile Rust code in a way so that it can be called from
C. This is fairly easy, but requires a few things:

no_mangle
pub extern fn hello_rust() -> *const u8 {
"Hello, world!\0".as_ptr()
}

The extern makes this function adhere to the C calling convention, as
discussed above in “Foreign Calling Conventions”. The no mangle attribute
turns off Rust’s name mangling, so that it is easier to link to.

FFI and panics

It’s important to be mindful of panic!s when working with FFI. A panic!
across an FFI boundary is undefined behavior. If you’re writing code that
may panic, you should run it in another thread, so that the panic doesn’t
bubble up to C:

use std::thread;

no_mangle
pub extern fn oh no() -> i32 {
let h = thread::spawn(|| {
panic!("Oops!");
F)i
match h.join() {
ok(_) => 1,

Err(_) => 0,

}

Representing opaque structs

Sometimes, a C library wants to provide a pointer to something, but not let
you know the internal details of the thing it wants. The simplest way is to
use a void * argument:

void foo(void *argqg);
void bar(void *argqg);

We can represent this in Rust with the ¢_void type:

extern crate libc;

extern "C" {
pub fn foo(arg: *mut Iibc::c_void);
pub fn bar(arg: *mut Iibc::c_void);

This is a perfectly valid way of handling the situation. However, we can do
a bit better. To solve this, some C libraries will instead create a struct,
where the details and memory layout of the struct are private. This gives
some amount of type safety. These structures are called ‘opaque’. Here’s an
example, in C:

struct Foo; /* Foo is a structure, but its contents are not part of the public intert
L ce */

struct Bar;

void foo(struct Foo *arg);
void bar(struct Bar *arg);

To do this in Rust, let’s create our own opaque types with enum:

pub enum Foo {}
pub enum Bar {}

extern "C" {
pub fn foo(arg: *mut Foo);
pub fn bar(arg: *mut Bar);

By using an enum with no variants, we create an opaque type that we can’t
instantiate, as it has no variants. But because our Foo and Bar types are
different, we’ll get type safety between the two of them, so we cannot
accidentally pass a pointer to Foo to bar ().

Borrow and AsRef

The Borrow and AsRef traits are very similar, but different. Here’s a quick
refresher on what these two traits mean.

Borrow

http://doc.rust-lang.org/std/borrow/trait.Borrow.html
http://doc.rust-lang.org/std/convert/trait.AsRef.html

The Borrow trait is used when you’re writing a datastructure, and you want
to use either an owned or borrowed type as synonymous for some purpose.

For example, HashMap has a get_method which uses Borrow:

fn get<Q: ?Sized>(&self, k: &Q) -> Option<&Vv>
where K: Borrow<Q>,
Q: Hash + Eq

This signature is pretty complicated. The Kk parameter is what we’re
interested in here. It refers to a parameter of the HashMap itself:

struct HashMap<K, V, S = RandomState> {

The x parameter is the type of key the HashMap uses. So, looking at the
signature of get() again, we can use get() when the key implements
Borrow<Q>. That way, we can make a HashMap which uses string keys, but
use &strs when we’re searching:

use std::collections::HashMap;

let mut map = HashMap::new();
map.insert("Foo".to_string(), 42);

assert eqg!(map.get("Foo"), Some(&42));
This is because the standard library has impl Borrow<str> for String.

For most types, when you want to take an owned or borrowed type, a &T is
enough. But one area where Borrow is effective is when there’s more than
one kind of borrowed value. This is especially true of references and slices:
you can have both an &T or a smut T. If we wanted to accept both of these
types, Borrow is up for it:

use std::borrow::Borrow;
use std::fmt::Display;

fn foo<T: Borrow<i32> + Display>(a: T) {
println!("a is borrowed: {}", a);

}

let mut i = 5;

http://doc.rust-lang.org/std/collections/struct.HashMap.html
http://doc.rust-lang.org/std/collections/struct.HashMap.html#method.get

foo(&i);
foo(&mut 1i);

This will print out a is borrowed: 5 twice.

AsRef

The asRef trait is a conversion trait. It’s used for converting some value to a
reference in generic code. Like this:

let s = "Hello".to_string();

fn foo<T: AsRef<str>>(s: T) {
let slice = s.as_ref();

}

Which should I use?

We can see how they’re kind of the same: they both deal with owned and
borrowed versions of some type. However, they’re a bit different.

Choose Borrow when you want to abstract over different kinds of
borrowing, or when you’re building a datastructure that treats owned and
borrowed values in equivalent ways, such as hashing and comparison.

Choose asref when you want to convert something to a reference directly,
and you’re writing generic code.

Release Channels
The Rust project uses a concept called ‘release channels’ to manage

releases. It’s important to understand this process to choose which version
of Rust your project should use.

Overview

There are three channels for Rust releases:

e Nightly

e Beta
e Stable

New nightly releases are created once a day. Every six weeks, the latest
nightly release is promoted to ‘Beta’. At that point, it will only receive
patches to fix serious errors. Six weeks later, the beta is promoted to
‘Stable’, and becomes the next release of 1.x.

This process happens in parallel. So every six weeks, on the same day,
nightly goes to beta, beta goes to stable. When 1.x is released, at the same
time, 1. (x + 1)-beta is released, and the nightly becomes the first version
of 1.(x + 2)-nightly.

Choosing a version

Generally speaking, unless you have a specific reason, you should be using
the stable release channel. These releases are intended for a general
audience.

However, depending on your interest in Rust, you may choose to use
nightly instead. The basic tradeoff is this: in the nightly channel, you can
use unstable, new Rust features. However, unstable features are subject to
change, and so any new nightly release may break your code. If you use the
stable release, you cannot use experimental features, but the next release of
Rust will not cause significant issues through breaking changes.

Helping the ecosystem through CI

What about beta? We encourage all Rust users who use the stable release
channel to also test against the beta channel in their continuous integration
systems. This will help alert the team in case there’s an accidental
regression.

Additionally, testing against nightly can catch regressions even sooner, and
so if you don’t mind a third build, we’d appreciate testing against all
channels.

As an example, many Rust programmers use Travis to test their crates,
which is free for open source projects. Travis supports Rust directly, and
you can use a .travis.yml file like this to test on all channels:

language:
rust:
- nightly
- beta
- stable

matrix:
allow_failures:
- rust:

With this configuration, Travis will test all three channels, but if something
breaks on nightly, it won’t fail your build. A similar configuration is
recommended for any CI system, check the documentation of the one
you’re using for more details.

Using Rust without the standard library

Rust’s standard library provides a lot of useful functionality, but assumes
support for various features of its host system: threads, networking, heap
allocation, and others. There are systems that do not have these features,
however, and Rust can work with those too! To do so, we tell Rust that we
don’t want to use the standard library via an attribute: #! [no_std].

Note: This feature is technically stable, but there are some caveats. For
one, you can build a #! [no_std] library on stable, but not a binary.
For details on binaries without the standard library, see the nightly
chapter on #! [no_std],

To use #! [no_std], add it to your crate root:

no_std

fn plus_one(x: i32) -> i32 {
x + 1

}

https://travis-ci.org/
http://docs.travis-ci.com/user/languages/rust/

Much of the functionality that’s exposed in the standard library is also
available via the core_crate. When we’re using the standard library, Rust
automatically brings std into scope, allowing you to use its features without
an explicit import. By the same token, when using #! [no_std], Rust will
bring core into scope for you, as well as its prelude. This means that a lot of
code will Just Work:

no_std

fn may fail(failure: bool) -> Result<(), &'static str> {
if failure {

}

}

Err("this didn’t work!")
else {
Ok (())

. ‘Gigabyte’ can mean two things: 1079, or 2A30. The SI standard

resolved this by stating that ‘gigabyte’ is 1079, and ‘gibibyte’ is 2A30.
However, very few people use this terminology, and rely on context to
differentiate. We follow in that tradition here. <.

. We can make the memory live longer by transferring ownership,

sometimes called ‘moving out of the box’. More complex examples
will be covered later.«2

.Arc<UnsafeCell<T>> actually won’t compile since UnsafeCell<T>

isn’t send or Sync, but we can wrap it in a type and implement
Send/sync for it manually to get Arc<wrapper<T>> where Wrapper is
struct Wrapper<T>(UnsafeCell<T>) L

.&[T] and smut [T] are slices; they consist of a pointer and a length

and can refer to a portion of a vector or array. smut [T] can have its
elements mutated, however its length cannot be touched.

http://doc.rust-lang.org/core/index.html
http://doc.rust-lang.org/core/prelude/v1/index.html

Nightly Rust

Rust provides three distribution channels for Rust: nightly, beta, and stable.
Unstable features are only available on nightly Rust. For more details on
this process, see ‘Stability as a deliverable’.

To install nightly Rust, you can use rustup.sh:

$ curl -s https://static.rust-lang.org/rustup.sh | sh -s -- --channel=nightly

If you’re concerned about the potential insecurity of using curl | sh,
please keep reading and see our disclaimer below. And feel free to use a
two-step version of the installation and examine our installation script:

$ curl -f -L https://static.rust-lang.org/rustup.sh -0
$ sh rustup.sh --channel=nightly

If you’re on Windows, please download either the 32-bit installer or the 64-
bit installer and run it.

Uninstalling

If you decide you don’t want Rust anymore, we’ll be a bit sad, but that’s
okay. Not every programming language is great for everyone. Just run the
uninstall script:

$ sudo /usr/local/lib/rustlib/uninstall.sh

If you used the Windows installer, re-run the .msi and it will give you an
uninstall option.

Some people, and somewhat rightfully so, get very upset when we tell you
to curl | sh. Basically, when you do this, you are trusting that the good
people who maintain Rust aren’t going to hack your computer and do bad
things. That’s a good instinct! If you’re one of those people, please check
out the documentation on building Rust from Source, or the official binary
downloads.

http://blog.rust-lang.org/2014/10/30/Stability.html
http://curlpipesh.tumblr.com/
https://static.rust-lang.org/dist/rust-nightly-i686-pc-windows-gnu.msi
https://static.rust-lang.org/dist/rust-nightly-x86_64-pc-windows-gnu.msi
https://github.com/rust-lang/rust#building-from-source
https://www.rust-lang.org/install.html

Oh, we should also mention the officially supported platforms:

e Windows (7, 8, Server 2008 R2)
e Linux (2.6.18 or later, various distributions), x86 and x86-64
e OSX 10.7 (Lion) or greater, x86 and x86-64

We extensively test Rust on these platforms, and a few others, too, like
Android. But these are the ones most likely to work, as they have the most
testing.

Finally, a comment about Windows. Rust considers Windows to be a first-
class platform upon release, but if we’re honest, the Windows experience
isn’t as integrated as the Linux/OS X experience is. We’re working on it! If
anything does not work, it is a bug. Please let us know if that happens. Each
and every commit is tested against Windows like any other platform.

If you’ve got Rust installed, you can open up a shell, and type this:

$ rustc --version

You should see the version number, commit hash, commit date and build
date:

rustc 1.0.0-nightly (f11f3e7ba 2015-01-04) (built 2015-01-06)
If you did, Rust has been installed successfully! Congrats!

This installer also installs a copy of the documentation locally, so you can
read it offline. On UNIX systems, /usr/local/share/doc/rust is the
location. On Windows, it’s in a share/doc directory, inside wherever you
installed Rust to.

If not, there are a number of places where you can get help. The easiest is
the #rust IRC channel on irc.mozilla.org, which you can access through
Mibbit. Click that link, and you’ll be chatting with other Rustaceans (a silly
nickname we call ourselves), and we can help you out. Other great
resources include the user’s forum, and Stack Overflow.

irc://irc.mozilla.org/#rust
http://chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
https://users.rust-lang.org/
http://stackoverflow.com/questions/tagged/rust

Compiler Plugins

Introduction

rustc can load compiler plugins, which are user-provided libraries that
extend the compiler’s behavior with new syntax extensions, lint checks, etc.

A plugin is a dynamic library crate with a designated registrar function that
registers extensions with rustc. Other crates can load these extensions
using the crate attribute #![plugin(...)]. See the rustc plugin
documentation for more about the mechanics of defining and loading a
plugin.

If present, arguments passed as #! [plugin(foo(... args ...))] are not
interpreted by rustc itself. They are provided to the plugin through the
Registry’s args method.

In the vast majority of cases, a plugin should only be used through #:
[plugin] and not through an extern crate item. Linking a plugin would
pull in all of libsyntax and librustc as dependencies of your crate. This is
generally unwanted unless you are building another plugin. The
plugin as_library lint checks these guidelines.

The usual practice is to put compiler plugins in their own crate, separate
from any macro rules! macros or ordinary Rust code meant to be used by
consumers of a library.

Syntax extensions

Plugins can extend Rust’s syntax in various ways. One kind of syntax
extension is the procedural macro. These are invoked the same way as
ordinary macros, but the expansion is performed by arbitrary Rust code that
manipulates syntax trees at compile time.

Let’s write a plugin roman numerals.rs that implements Roman numeral
integer literals.

https://github.com/rust-lang/rust/blob/master/src/test/run-pass-fulldeps/auxiliary/roman_numerals.rs

#![crate_type="dylib"]
#! [feature(plugin registrar, rustc_ private)]

extern crate syntax;
extern crate rustc;
extern crate rustc_plugin;

use syntax::parse::token;

use syntax::ast::TokenTree;

use syntax::ext::base::{ ExtCtxt, MacResult, DummyResult, MacEager} ;
use syntax::ext::build::AstBuilder; // trait for expr usize

use syntax pos::Spanj;

use rustc plugin::Registry;

fn expand_rn(cx: &mut ExtCtxt, sp: Span, args: & TokenTree])
-> Box<MacResult + 'static> {

static NUMERALS: &'static [(&'static str, usize)] = §[

("M", 1000), ("cM", 900), ("D", 500), ("CD", 400),
("c*, 100), ("xc", 90), ("L", 50), ("XL", 40),
("x", 10), ("Ix", 9), ("Vv", 5), ("Iv", 4),
("I, 1)1;

if args.len() != 1 {
CcX.span_err (
SP/
&format!("argument should be a single identifier, but got {} arguments",
L rgs.len()));
return DummyResult::any(sp);

}
let text = match args[0] {
TokenTree::Token(_, token::Ident(s, _)) => s.to_string(),
=> {

cx.span_err(sp, "argument should be a single identifier");
return DummyResult::any(sp);

}i

let mut text = &*text;
let mut total = 0;
while !text.is empty() {
match NUMERALS.iter().find(|&&(rn, _)| text.starts with(rn)) {
Some(&(rn, val)) => {
total += val;
text = &text[rn.len()..];
}
None => {
cxX.span_err(sp, "invalid Roman numeral");
return DummyResult::any(sp);

MacEager: :expr(cx.expr_usize(sp, total))

plugin registrar
pub fn plugin registrar(reg: &mut Registry) {
reg.register macro("rn", expand rn);

}

Then we can use rn! () like any other macro:

feature(plugin
plugin(roman_numerals

fn main() {

assert eq!(rn!(MMXV), 2015);
}

The advantages over a simple fn(&str) -> u32 are:

e The (arbitrarily complex) conversion is done at compile time.

e Input validation is also performed at compile time.

e It can be extended to allow use in patterns, which effectively gives a
way to define new literal syntax for any data type.

In addition to procedural macros, you can define new derive-like attributes
and other kinds of extensions. See
Registry::register syntax extension and the SyntaxExtension enum.
For a more involved macro example, see regex_macros.

Tips and tricks

Some of the macro debugging tips are applicable.

You can use syntax::parse to turn token trees into higher-level syntax
elements like expressions:

fn expand_ foo(cx: &mut ExtCtxt, sp: Span, args: & TokenTree])
-> Box<MacResult+'static> {

let mut parser = cx.new parser from tts(args);

let expr: P<EXpr> = parser.parse_expr();

http://doc.rust-lang.org/reference.html#derive
https://github.com/rust-lang/regex/blob/master/regex_macros/src/lib.rs

Looking through libsyntax_parser code will give you a feel for how the
parsing infrastructure works.

Keep the spans of everything you parse, for better error reporting. You can
wrap Spanned around your custom data structures.

Calling Extctxt::span fatal will immediately abort compilation. It’s
better to instead call Extctxt::span err and return DummyResult so that
the compiler can continue and find further errors.

To print syntax fragments for debugging, you can use span_note together
with syntax: :print::pprust::* to string.

The example above produced an integer literal using
AstBuilder::expr usize. As an alternative to the AstBuilder trait,
libsyntax provides a set of quasiquote macros. They are undocumented
and very rough around the edges. However, the implementation may be a
good starting point for an improved quasiquote as an ordinary plugin
library.

Lint plugins
Plugins can extend Rust’s lint infrastructure with additional checks for code

style, safety, etc. Now let’s write a plugin 1int plugin test.rs that warns
about any item named lintme.

feature(plugin_registrar
feature(box_syntax, rustc_private

extern crate syntax;

// Load rustc as a plugin to get macros
macro_use

extern crate rustc;

extern crate rustc_plugin;

use rustc::lint::{EarlyContext, LintContext, LintPass, EarlyLintPass,
EarlyLintPassObject, LintArray};

use rustc plugin::Registry;

use syntax::ast;

declare lint!(TEST LINT, Warn, "Warn about items named 'lintme'");

https://github.com/rust-lang/rust/blob/master/src/libsyntax/parse/parser.rs
http://doc.rust-lang.org/reference.html#lint-check-attributes
https://github.com/rust-lang/rust/blob/master/src/test/run-pass-fulldeps/auxiliary/lint_plugin_test.rs

struct Pass;

impl LintPass for Pass {
fn get lints(&self) -> LintArray {
lint array!(TEST LINT)
}
}

impl EarlyLintPass for Pass {
fn check item(&mut self, cx: &EarlyContext, it: &ast::Item) {
if it.ident.name.as_str() == "lintme" {
cx.span_lint(TEST_LINT, it.span, "item is named 'lintme'");

}

plugin registrar
pub fn plugin registrar(reg: &mut Registry) {
reg.register early lint pass(box Pass as EarlyLintPassObject);

}

Then code like

plugin(lint plugin test
fn lintme() { }
will produce a compiler warning:

foo.rs:4:1: 4:16 warning: item is named 'lintme', #[warn(test_lint)] on by default
foo.rs:4 fn lintme() { }

The components of a lint plugin are:

e one or more declare lint! invocations, which define static Lint
structs;

e a struct holding any state needed by the lint pass (here, none);

* a LintPass Implementation defining how to check each syntax
element. A single LintPass may call span 1lint for several different
Lints, but should register them all through the get 1ints method.

Lint passes are syntax traversals, but they run at a late stage of compilation
where type information is available. rustc’s built-in lints mostly use the

https://github.com/rust-lang/rust/blob/master/src/librustc/lint/builtin.rs

same infrastructure as lint plugins, and provide examples of how to access
type information.

Lints defined by plugins are controlled by the usual attributes and compiler
flags, e.g. #[allow(test lint)] or -A test-lint. These identifiers are
derived from the first argument to declare lint!, with appropriate case
and punctuation conversion.

You can run rustc -w help foo.rs to see a list of lints known to rustc,
including those provided by plugins loaded by foo.rs.

Inline Assembly

For extremely low-level manipulations and performance reasons, one might
wish to control the CPU directly. Rust supports using inline assembly to do
this via the asm! macro.

asm! (assembly template
: output operands
: input operands
: clobbers
: options

):

Any use of asm is feature gated (requires #! [feature(asm)] on the crate to
allow) and of course requires an unsafe block.

Note: the examples here are given in x86/x86-64 assembly, but all
platforms are supported.

Assembly template

The assembly template is the only required parameter and must be a
literal string (i.e. "")

feature(asm

cfg(any(target arch "x86", target arch "x86_64"
fn foo() {
unsafe {

http://doc.rust-lang.org/reference.html#lint-check-attributes

asm!("NOP");
}
// other platforms
cfg(not (any(target_arch "x86", target arch "x86_64"

fn foo() { /* ... */}

fn main() {

(The feature(asm) and #[cfg]s are omitted from now on.)

Output operands, input operands, clobbers and options are all optional but
you must add the right number of : if you skip them:

asm! ("xor %eax, %eax"

"eax"

)
Whitespace also doesn’t matter:

asm!("xor %eax, %eax" ::: "eax");
Operands

Input and output operands follow the same format: : "constraintsl"
(exprl), "constraints2"(expr2), ...". Output operand expressions
must be mutable lvalues, or not yet assigned:

fn add(a: i32, b: i32) -> i32 {
let c: i32;
unsafe {
asm!("add $2, $0"
: "=r'(c)
: "0"(a), "r"(b)
)i

}

fn main() {

assert eqg!(add(3, 14159), 14162)
}

If you would like to use real operands in this position, however, you are
required to put curly braces {} around the register that you want, and you
are required to put the specific size of the operand. This is useful for very
low level programming, where which register you use is important:

let result: u8;
asm!("in %dx, %al" : "={al}"(result) : "{dx}"(port));
result

Clobbers

Some instructions modify registers which might otherwise have held
different values so we use the clobbers list to indicate to the compiler not to
assume any values loaded into those registers will stay valid.

// Put the value 0x200 in eax
asm!("mov $$0x200, %eax" : /* no outputs */ : /* no inputs */ : "eax");

Input and output registers need not be listed since that information is
already communicated by the given constraints. Otherwise, any other
registers used either implicitly or explicitly should be listed.

If the assembly changes the condition code register cc should be specified
as one of the clobbers. Similarly, if the assembly modifies memory, memory
should also be specified.

Options

The last section, options is specific to Rust. The format is comma
separated literal strings (i.e. :"foo", "bar", "baz"). It’s used to specify
some extra info about the inline assembly:

Current valid options are:

1. volatile - specifying this is analogous to asm _ volatile
(...) 1n gcc/clang.

2. alignstack - certain instructions expect the stack to be aligned a certain
way (i.e. SSE) and specifying this indicates to the compiler to insert its
usual stack alignment code

3. intel - use intel syntax instead of the default AT&T.

let result: i32;
unsafe {
asm!("mov eax, 2" : "={eax}"(result) : : : "intel")

}

println!("eax is currently {}", result);

More Information

The current implementation of the asm! macro is a direct binding to
LLVM’s inline assembler expressions, so be sure to check out their
documentation _as well for more information about clobbers, constraints,
etc.

No stdlib

Rust’s standard library provides a lot of useful functionality, but assumes
support for various features of its host system: threads, networking, heap
allocation, and others. There are systems that do not have these features,
however, and Rust can work with those too! To do so, we tell Rust that we
don’t want to use the standard library via an attribute: #! [no_std].

Note: This feature is technically stable, but there are some caveats. For
one, you can build a #![no_std] library on stable, but not a binary.
For details on libraries without the standard library, see the chapter on
#![no_std]

Obviously there’s more to life than just libraries: one can use #[no std]
with an executable.

Using libc

http://llvm.org/docs/LangRef.html#inline-assembler-expressions
http://llvm.org/docs/LangRef.html#inline-assembler-expressions

In order to build a #[no_std] executable we will need libc as a dependency.
We can specify this using our cargo.toml file:

[dependencies]
libc = { version = "0.2.14", default-features = false }

Note that the default features have been disabled. This is a critical step - the
default features of libc include the standard library and so must be
disabled.

Writing an executable without stdlib

Controlling the entry point is possible in two ways: the #[start] attribute,
or overriding the default shim for the C main function with your own.

The function marked #[start] is passed the command line parameters in
the same format as C:

feature(lang_items
feature(start
no_std

// Pull in the system libc library for what crtO0.o likely requires
extern crate libc;

// Entry point for this program
start
fn start(_argc: isize, _argv: *const *const u8) -> isize {
0
}

// These functions are used by the compiler, but not
// for a bare-bones hello world. These are normally
// provided by libstd.

lang "eh personality"

no_mangle
pub extern fn eh personality() {
}

lang "panic_fmt"
no_mangle
pub extern fn rust begin panic(_msg: core::fmt::Arguments,
_file: &'static str,
_line: u32) -> ! {
loop {}

To override the compiler-inserted main shim, one has to disable it with #!
[no_main] and then create the appropriate symbol with the correct ABI and
the correct name, which requires overriding the compiler’s name mangling
too:

feature(lang_items
feature(start
no_std

no main

// Pull in the system libc library for what crtO.o likely requires
extern crate libc;

// Entry point for this program
no_mangle] // ensure that this symbol is called "main” in the output
pub extern fn main(_argc: i32, _argv: *const *const u8) -> i32 {
0
}

// These functions and traits are used by the compiler, but not
// for a bare-bones hello world. These are normally
// provided by libstd.
lang "eh personality"
no_mangle
pub extern fn eh personality() {
}

lang "panic_fmt"
no_mangle
pub extern fn rust begin panic(_msg: core::fmt::Arguments,
_file: &'static str,
_line: u32) -> ! {
loop {}

More about the langauge items

The compiler currently makes a few assumptions about symbols which are
available in the executable to call. Normally these functions are provided by
the standard library, but without it you must define your own. These
symbols are called “language items”, and they each have an internal name,
and then a signature that an implementation must conform to.

The first of these two functions, eh _personality, is used by the failure
mechanisms of the compiler. This is often mapped to GCC’s personality
function (see the libstd implementation for more information), but crates

https://github.com/rust-lang/rust/blob/master/src/libpanic_unwind/gcc.rs

which do not trigger a panic can be assured that this function is never
called. Both the language item and the symbol name are eh_personality.

The second function, panic_fmt, is also used by the failure mechanisms of
the compiler. When a panic happens, this controls the message that’s
displayed on the screen. While the language item’s name is panic_fmt, the
symbol name is rust_begin_panic.

Intrinsics

Note: intrinsics will forever have an unstable interface, it is
recommended to use the stable interfaces of libcore rather than
intrinsics directly.

These are imported as if they were FFI functions, with the special rust-
intrinsic ABI. For example, if one was in a freestanding context, but
wished to be able to transmute between types, and perform efficient pointer
arithmetic, one would import those functions via a declaration like

feature(intrinsics

extern "rust-intrinsic" {
fn transmute<T, U>(x: T) -> U;

fn offset<T>(dst: *const T, offset: isize) -> *const T;

}

As with any other FFI functions, these are always unsafe to call.

Lang items

Note: lang items are often provided by crates in the Rust distribution,
and lang items themselves have an unstable interface. It 1is
recommended to use officially distributed crates instead of defining
your own lang items.

The rustc compiler has certain pluggable operations, that is, functionality
that isn’t hard-coded into the language, but is implemented in libraries, with

a special marker to tell the compiler it exists. The marker is the attribute #
[lang = "..."] and there are various different values of ..., i.e. various
different ‘lang items’.

For example, Box pointers require two lang items, one for allocation and
one for deallocation. A freestanding program that uses the Box sugar for
dynamic allocations via malloc and free:

feature(lang items, box syntax, start, libc
no_std

extern crate libc;

extern {
fn abort() -> !;

}

lang "owned_box"
pub struct Box<T>(*mut T);

lang "exchange malloc"
unsafe fn allocate(size: usize, _align: usize) -> *mut u8 {
let p = libc::malloc(size as libc::size_t) as *mut u8;

// malloc failed

if p as usize == 0 {
abort();
}
p
}
lang "exchange free"

unsafe fn deallocate(ptr: *mut u8, size: usize, _align: usize) {
libc::free(ptr as *mut libc::c_void)

}

lang "box_free"
unsafe fn box free<T>(ptr: *mut T) {
deallocate(ptr as *mut u8, ::core::mem::size of::<T>(), ::core::mem::align of::<T

L ()i

}
start
fn main(argc: isize, argv: *const *const u8) -> isize {
let x = box 1;
0
}

lang "eh personality"] extern fn eh personality() {}

lang "panic fmt"] fn panic_fmt() -> ! { loop {} }

Note the use of abort: the exchange malloc lang item is assumed to return
a valid pointer, and so needs to do the check internally.

Other features provided by lang items include:

e overloadable operators via traits: the traits corresponding to the ==, <,
dereferencing (*) and + (etc.) operators are all marked with lang items;
those specific four are eq, ord, deref, and add respectively.

e stack unwinding and general failure; the eh personality, fail and
fail bounds checks lang items.

e the traits in std: :marker used to indicate types of various kinds; lang
items send, sync and copy.

e the marker types and variance indicators found in std: :marker; lang

items covariant type, contravariant lifetime, etc.

Lang items are loaded lazily by the compiler; e.g. if one never uses Box then
there i1s no need to define functions for exchange malloc and
exchange free. rustc will emit an error when an item is needed but not
found in the current crate or any that it depends on.

Advanced linking

The common cases of linking with Rust have been covered earlier in this
book, but supporting the range of linking possibilities made available by
other languages is important for Rust to achieve seamless interaction with
native libraries.

Link args

There is one other way to tell rustc how to customize linking, and that is
via the 1ink_args attribute. This attribute is applied to extern blocks and
specifies raw flags which need to get passed to the linker when producing
an artifact. An example usage would be:

feature(link_ args

link_args "-foo -bar -baz"
extern {}

Note that this feature is currently hidden behind the feature(link args)
gate because this is not a sanctioned way of performing linking. Right now
rustc shells out to the system linker (gcc on most systems, link.exe on
MSVC), so it makes sense to provide extra command line arguments, but
this will not always be the case. In the future rustc may use LLVM directly
to link native libraries, in which case 1ink args will have no meaning. You
can achieve the same effect as the 1ink args attribute with the -c 1ink-
args argument to rustc.

It is highly recommended to not use this attribute, and rather use the more
formal #[1ink(...)] attribute on extern blocks instead.

Static linking

Static linking refers to the process of creating output that contains all
required libraries and so doesn’t need libraries installed on every system
where you want to use your compiled project. Pure-Rust dependencies are
statically linked by default so you can use created binaries and libraries
without installing Rust everywhere. By contrast, native libraries (e.g. 1ibc
and 1libm) are usually dynamically linked, but it is possible to change this
and statically link them as well.

Linking is a very platform-dependent topic, and static linking may not even
be possible on some platforms! This section assumes some basic familiarity
with linking on your platform of choice.

Linux

By default, all Rust programs on Linux will link to the system libc along
with a number of other libraries. Let’s look at an example on a 64-bit Linux
machine with GCC and glibc (by far the most common 1libc on Linux):

$ cat example.rs
fn main() {}
$ rustc example.rs
$ 1dd example
linux-vdso.so.l => (0x00007f£d565£d000)
libdl.so.2 => /1lib/x86_64-linux-gnu/libdl.so.2 (0x00007£a81889c000)
libpthread.so.0 => /1ib/x86_ 64-linux-gnu/libpthread.so.0
(0x00007£a81867e000)
librt.so.l => /1ib/x86 64-linux-gnu/librt.so.1l (0x00007£a818475000)
libgcc_s.so.1l => /1lib/x86_ 64-linux-gnu/libgcc_s.so.1l (0x00007£a81825£000)
libc.so.6 => /1ib/x86_64-linux-gnu/libc.so.6 (0x00007fa817e9a000)
/1ib64/1d-1linux-x86-64.s0.2 (0x00007£fa818cf9000)
libm.so.6 => /1ib/x86 64-linux-gnu/libm.so.6 (0x00007fa817b93000)

Dynamic linking on Linux can be undesirable if you wish to use new library
features on old systems or target systems which do not have the required
dependencies for your program to run.

Static linking is supported via an alternative libc, musl. You can compile
your own version of Rust with musl enabled and install it into a custom
directory with the instructions below:

mkdir musldist
PREFIX=$ (pwd)/musldist

Build musl

curl -0 http://www.musl-libc.org/releases/musl-1.1.10.tar.gz
tar xf musl-1.1.10.tar.gz

cd musl-1.1.10/

musl-1.1.10 $./configure --disable-shared --prefix=$PREFIX
musl-1.1.10 $ make

musl-1.1.10 $ make install

musl-1.1.10 $ cd ..

du -h musldist/lib/libc.a

.2M musldist/lib/libc.a

wv»w»nnnnnn

Build libunwind.a

curl -0 http://llvm.org/releases/3.7.0/1llvm-3.7.0.src.tar.xz

tar xf 1lvm-3.7.0.src.tar.xz

cd 1llvm-3.7.0.src/projects/

1llvm-3.7.0.src/projects $ curl http://llvm.org/releases/3.7.0/libunwind-
3.7.0.src.tar.

L xz | tar xJf -

llvm-3.7.0.src/projects $ mv libunwind-3.7.0.src libunwind
1llvm-3.7.0.src/projects $ mkdir libunwind/build

llvm-3.7.0.src/projects $ cd libunwind/build
llvm-3.7.0.src/projects/libunwind/build $ cmake -DLLVM PATH=../../.. -
DLIBUNWIND ENABL

L E SHARED=0 ..

1lvm-3.7.0.src/projects/libunwind/build $ make
1lvm-3.7.0.src/projects/libunwind/build $ cp lib/libunwind.a $PREFIX/1lib/
1llvm-3.7.0.src/projects/libunwind/build $ cd ../../../../

$ du -h musldist/lib/libunwind.a

164K musldist/lib/libunwind.a

$

$ # Build musl-enabled rust

NN

http://www.musl-libc.org/

$ git clone https://github.com/rust-lang/rust.git muslrust

$ cd muslrust

muslrust $./configure --target=x86_64-unknown-linux-musl --musl-root=$PREFIX --
prefix

L =$PREFIX

muslrust $ make

muslrust $ make install

muslrust $ cd ..

$ du -h musldist/bin/rustc

12K musldist/bin/rustc

You now have a build of a mus1-enabled Rust! Because we’ve installed it to
a custom prefix we need to make sure our system can find the binaries and
appropriate libraries when we try and run it:

$ export PATH=$PREFIX/bin:$PATH
$ export LD LIBRARY PATH=$PREFIX/lib:$LD LIBRARY PATH

Let’s try it out!

$ echo 'fn main() { println!("hi!"); panic!("failed"); }' > example.rs
$ rustc --target=x86_64-unknown-linux-musl example.rs
$ 1dd example
not a dynamic executable
$./example
hi!
thread 'main' panicked at 'failed', example.rs:1

Success! This binary can be copied to almost any Linux machine with the
same machine architecture and run without issues.

cargo build also permits the --target option so you should be able to
build your crates as normal. However, you may need to recompile your
native libraries against mus1 before they can be linked against.

Benchmark Tests

Rust supports benchmark tests, which can test the performance of your

code. Let’s make our src/1lib.rs look like this (comments elided):
feature(test

extern crate test;

pub fn add two(a: i32) -> i32 {

a+ 2

}

cfg(test
mod tests {
use super::*;
use test::Bencher;

test
fn it works() {
assert eqg!(4, add_two(2));
}

bench
fn bench _add_two(b: &mut Bencher) {
b.iter(|| add_two(2));

}

Note the test feature gate, which enables this unstable feature.

We’ve imported the test crate, which contains our benchmarking support.
We have a new function as well, with the bench attribute. Unlike regular
tests, which take no arguments, benchmark tests take a smut Bencher. This
Bencher provides an iter method, which takes a closure. This closure
contains the code we’d like to benchmark.

We can run benchmark tests with cargo bench:

$ cargo bench
Compiling adder v0.0.1 (file:///home/steve/tmp/adder)
Running target/release/adder-91b3e234d4ed382a

running 2 tests
test tests::it_works ... ignored
test tests::bench_add two ... bench: 1 ns/iter (+/- 0)

test result: ok. 0 passed; 0 failed; 1 ignored; 1 measured

Our non-benchmark test was ignored. You may have noticed that cargo
bench takes a bit longer than cargo test. This is because Rust runs our
benchmark a number of times, and then takes the average. Because we’re
doing so little work in this example, we have a 1 ns/iter (+/- 0), but
this would show the variance if there was one.

Advice on writing benchmarks:

e Move setup code outside the iter loop; only put the part you want to
measure inside

e Make the code do “the same thing” on each iteration; do not
accumulate or change state

e Make the outer function idempotent too; the benchmark runner is
likely to run it many times

e Make the inner iter loop short and fast so benchmark runs are fast
and the calibrator can adjust the run-length at fine resolution

e Make the code in the iter loop do something simple, to assist in
pinpointing performance improvements (Or regressions)

Gotcha: optimizations

There’s another tricky part to writing benchmarks: benchmarks compiled
with optimizations activated can be dramatically changed by the optimizer
so that the benchmark is no longer benchmarking what one expects. For
example, the compiler might recognize that some calculation has no
external effects and remove it entirely.

feature(test

extern crate test;
use test::Bencher;

bench
fn bench xor 1000 ints(b: &mut Bencher) {
b.iter (|| {
(0..1000).£f01d(0, |old, new| old " new);

)i
}

gives the following results

running 1 test
test bench xor 1000 _ints ... bench: 0 ns/iter (+/- 0)

test result: ok. 0 passed; 0 failed; 0 ignored; 1 measured

The benchmarking runner offers two ways to avoid this. Either, the closure
that the iter method receives can return an arbitrary value which forces the
optimizer to consider the result used and ensures it cannot remove the

computation entirely. This could be done for the example above by
adjusting the b.iter call to

b.iter(|]| {
// note lack of “; (could also use an explicit “return”).
(0..1000).£f01d(0, |old, new| old " new)

)i

Or, the other option is to call the generic test: :black_box function, which
i1s an opaque “black box™ to the optimizer and so forces it to consider any
argument as used.

feature(test
extern crate test;

b.iter (|| {

let n test::black box(1000);

(0..n).fold(0, |a, b|] a *~ b)
)

Neither of these read or modify the value, and are very cheap for small
values. Larger values can be passed indirectly to reduce overhead (e.g.
black box(&huge struct)).

Performing either of the above changes gives the following benchmarking
results

running 1 test
test bench xor 1000 _ints ... bench: 131 ns/iter (+/- 3)

test result: ok. 0 passed; 0 failed; 0 ignored; 1 measured

However, the optimizer can still modify a testcase in an undesirable manner
even when using either of the above.

Box Syntax and Patterns

Currently the only stable way to create a Box is via the Box: :new method.
Also it is not possible in stable Rust to destructure a Box in a match pattern.
The unstable box keyword can be used to both create and destructure a Box.
An example usage would be:

feature(box_syntax, box_ patterns

fn main() {
let b = Some(box 5);
match b {
Some(box n) if n < 0 => {
println!("Box contains negative number {}", n);
b
Some(box n) if n >= 0 => {
println!("Box contains non-negative number {}", n);

Y
None => {

println!("No box");
b

_ => unreachable! ()

Note that these features are currently hidden behind the box_syntax (box
creation) and box patterns (destructuring and pattern matching) gates
because the syntax may still change in the future.

Returning Pointers

In many languages with pointers, you’d return a pointer from a function so
as to avoid copying a large data structure. For example:

struct BigStruct {
one: i32,
two: i32,
// etc
one_hundred: i32,

}

fn foo(x: Box<BigStruct>) -> Box<BigStruct> {
Box::new(*x)

}

fn main() {
let x = Box::new(BigStruct {
one: 1,
two: 2,
one_hundred: 100,

)i

let y = foo(x);

The idea is that by passing around a box, you’re only copying a pointer,
rather than the hundred i32s that make up the Bigstruct.

This is an antipattern in Rust. Instead, write this:

feature(box_syntax

struct BigStruct {
one: i32,
two: i32,
// etc
one_hundred: i32,

}

fn foo(x: Box<BigStruct>) -> BigStruct {
*X

}

fn main() {
let x = Box::new(BigStruct {
one: 1,
two: 2,
one_hundred: 100,

)i

let y: Box<BigStruct> = box foo(x);
}

This gives you flexibility without sacrificing performance.

You may think that this gives us terrible performance: return a value and
then immediately box it up ?! Isn’t this pattern the worst of both worlds?
Rust is smarter than that. There is no copy in this code. main allocates
enough room for the box, passes a pointer to that memory into foo as x, and
then foo writes the value straight into the Box<T>.

This is important enough that it bears repeating: pointers are not for
optimizing returning values from your code. Allow the caller to choose how
they want to use your output.

Slice Patterns

If you want to match against a slice or array, you can use & with the
slice patterns feature:

feature(slice_ patterns

fn main() {

let v vec!["match this", "1"];

match &v[..] {
& "match this", second] => println!("The second element is {}", second),

_ = {},

The advanced slice patterns gate lets you use .. to indicate any number
of elements inside a pattern matching a slice. This wildcard can only be
used once for a given array. If there’s an identifier before the . ., the result
of the slice will be bound to that name. For example:

feature(advanced_slice patterns, slice_ patterns

fn is_symmetric(list: & u32]) -> bool {
match list {
&1 | & _]1 => true,
& x, ref inside.., y] if x == y => is_ symmetric(inside),
_ => false

}

fn main() {
let sym = & 0, 1, 4, 2, 4, 1, 0];
assert!(is_symmetric(sym));

let not_sym = & 0, 1, 7, 2, 4, 1, 0];
assert!(!is_symmetric(not_sym));

Associated Constants

With the associated consts feature, you can define constants like this:

feature(associated consts

trait Foo {
const ID: i32;

}
impl Foo for i32 {

const ID: i32 = 1;
}

fn main() {

assert _eq!(l, i32::ID);

Any implementor of Foo will have to define 1. Without the definition:

feature(associated consts

trait Foo {
const ID: i32;

}

impl Foo for i32 {
}

gives

error: not all trait items implemented, missing: “ID~ [E0046]
impl Foo for i32 {
}

A default value can be implemented as well:

feature(associated_consts

trait Foo {
const ID: i32 = 1;
}

impl Foo for i32 {
}

impl Foo for i64 {
const ID: i32 = 5;
}

fn main() {
assert _eq!(l, i32::ID);
assert _eq!(5, i164::ID);

As you can see, when implementing Foo, you can leave it unimplemented,
as with i32. It will then use the default value. But, as in i64, we can also
add our own definition.

Associated constants don’t have to be associated with a trait. An impl block
for a struct or an enum works fine too:

feature(associated consts
struct Foo;

impl Foo {
const FOO: u32 = 3;
}

Custom Allocators

Allocating memory isn’t always the easiest thing to do, and while Rust
generally takes care of this by default it often becomes necessary to
customize how allocation occurs. The compiler and standard library
currently allow switching out the default global allocator in use at compile
time. The design is currently spelled out in REC 1183 but this will walk you
through how to get your own allocator up and running.

Default Allocator

The compiler currently ships two default allocators: alloc system and
alloc jemalloc (some targets don’t have jemalloc, however). These
allocators are normal Rust crates and contain an implementation of the
routines to allocate and deallocate memory. The standard library is not
compiled assuming either one, and the compiler will decide which allocator
i1s in use at compile-time depending on the type of output artifact being
produced.

Binaries generated by the compiler will use alloc jemalloc by default
(where available). In this situation the compiler “controls the world” in the
sense of it has power over the final link. Primarily this means that the
allocator decision can be left up the compiler.

Dynamic and static libraries, however, will use alloc_system by default.
Here Rust is typically a ‘guest’ in another application or another world
where it cannot authoritatively decide what allocator is in use. As a result it
resorts back to the standard APIs (e.g. malloc and free) for acquiring and
releasing memory.

https://github.com/rust-lang/rfcs/blob/master/text/1183-swap-out-jemalloc.md

Switching Allocators

Although the compiler’s default choices may work most of the time, it’s
often necessary to tweak certain aspects. Overriding the compiler’s decision
about which allocator is in use is done simply by linking to the desired
allocator:

feature(alloc_system
extern crate alloc_system;

fn main() {
let a = Box::new(4); // allocates from the system allocator
println!("{}", a);

In this example the binary generated will not link to jemalloc by default but
instead use the system allocator. Conversely to generate a dynamic library
which uses jemalloc by default one would write:

feature(alloc_jemalloc
crate type "dylib"

extern crate alloc_jemalloc;

pub fn foo() {
let a = Box::new(4); // allocates from jemalloc
println!("{}", a);

Writing a custom allocator

Sometimes even the choices of jemalloc vs the system allocator aren’t
enough and an entirely new custom allocator is required. In this you’ll write
your own crate which implements the allocator API (e.g. the same as
alloc_system Or alloc jemalloc). As an example, let’s take a look at a
simplified and annotated version of alloc_system

// The compiler needs to be instructed that this crate is an allocator in order
// to realize that when this is linked in another allocator like jemalloc should
// not be linked in

feature(allocator

allocator

// Allocators are not allowed to depend on the standard library which in turn

// requires an allocator in order to avoid circular dependencies. This crate,
// however, can use all of libcore.
#![no_std]

// Let's give a unique name to our custom allocator
#![crate_name = "my allocator"]
#![crate_type = "rlib"]

// Our system allocator will use the in-tree libc crate for FFI bindings. Note
// that currently the external (crates.io) libc cannot be used because it links
// to the standard library (e.g. “#![no std] isn't stable yet), so that's why
// this specifically requires the in-tree version.

#! [feature(libc)]

extern crate libc;

// Listed below are the five allocation functions currently required by custom
// allocators. Their signatures and symbol names are not currently typechecked
// by the compiler, but this is a future extension and are required to match

// what is found below.

//

// Note that the standard “malloc™ and “realloc” functions do not provide a way
// to communicate alignment so this implementation would need to be improved

// with respect to alignment in that aspect.

#[no_mangle]
pub extern fn _ rust_allocate(size: usize, _align: usize) -> *mut u8 {
unsafe { libc::malloc(size as libc::size t) as *mut u8 }

}

#[no_mangle]
pub extern fn __ rust deallocate(ptr: *mut u8, old size: usize, _align: usize) {
unsafe { libc::free(ptr as *mut libc::c_void) }

#[no_mangle]
pub extern fn __ rust reallocate(ptr: *mut u8, _old size: usize, size: usize,
_align: usize) -> *mut u8 {
unsafe {
libc::realloc(ptr as *mut Iibc::c_void, size as libc::size t) as *mut u8

#[no_mangle]
pub extern fn __ rust reallocate_inplace(_ptr: *mut u8, old size: usize,
_size: usize, _align: usize) -> usize {
old_size // this api is not supported by libc

#[no_mangle]
pub extern fn __ rust usable_size(size: usize, _align: usize) -> usize {
size

}

After we compile this crate, it can be used as follows:

extern crate my_allocator;

fn main() {
let a = Box::new(8); // allocates memory via our custom allocator crate
println!("{}", a);

Custom allocator limitations

There are a few restrictions when working with custom allocators which
may cause compiler errors:

e Any one artifact may only be linked to at most one allocator. Binaries,
dylibs, and staticlibs must link to exactly one allocator, and if none
have been explicitly chosen the compiler will choose one. On the other
hand rlibs do not need to link to an allocator (but still can).

e A consumer of an allocator is tagged with #![needs allocator]
(e.g. the 1iballoc crate currently) and an #[allocator] crate cannot
transitively depend on a crate which needs an allocator (e.g. circular
dependencies are not allowed). This basically means that allocators
must restrict themselves to libcore currently.

Glossary

Not every Rustacean has a background in systems programming, nor in
computer science, so we’ve added explanations of terms that might be
unfamiliar.

Abstract Syntax Tree

When a compiler is compiling your program, it does a number of different
things. One of the things that it does is turn the text of your program into an
‘abstract syntax tree’, or ‘AST’. This tree is a representation of the structure
of your program. For example, 2 + 3 can be turned into a tree:

+
/ N\
2 3

And 2 + (3 * 4) would look like this:

+
/\
2 *
/\
3 4

Arity

Arity refers to the number of arguments a function or operation takes.

let x = (2, 3);
let y = (4, 6);
let z = (8, 2, 6);

In the example above x and y have arity 2. z has arity 3.
Bounds

Bounds are constraints on a type or trait. For example, if a bound is placed
on the argument a function takes, types passed to that function must abide

by that constraint.
Combinators

Combinators are higher-order functions that apply only functions and
earlier defined combinators to provide a result from its arguments. They can
be used to manage control flow in a modular fashion.

DST (Dynamically Sized Type)
A type without a statically known size or alignment. (more info)
Expression

In computer programming, an expression is a combination of values,
constants, variables, operators and functions that evaluate to a single value.
For example, 2 + (3 * 4) is an expression that returns the value 14. It is
worth noting that expressions can have side-effects. For example, a function
included in an expression might perform actions other than simply returning
a value.

Expression-Oriented Language

In early programming languages, expressions and statements were two
separate syntactic categories: expressions had a value and statements did
things. However, later languages blurred this distinction, allowing
expressions to do things and statements to have a value. In an expression-
oriented language, (nearly) every statement is an expression and therefore
returns a value. Consequently, these expression statements can themselves
form part of larger expressions.

Statement

file:///private/var/folders/j5/_0bnx0jd7sx7j0gy_jnqj_bw0000gn/C/calibre_5.10.1_tmp_ytnjsotx/q4z7cpj2_pdf_out/EPUB/nomicon/exotic-sizes.html#dynamically-sized-types-dsts

In computer programming, a statement is the smallest standalone element of
a programming language that commands a computer to perform an action.

Syntax Index

Keywords

e as: primitive casting, or disambiguating the specific trait containing an
item. See [Casting Between Types (as)], [Universal Function Call
Syntax (Angle-bracket Form)], Associated Types.

e break: break out of loop. See [Loops (Ending Iteration Early)].

e const: constant items and constant raw pointers. See const_and
static, Raw Pointers.

e continue: continue to next loop iteration. See [Loops (Ending
Iteration Early)].

e crate: external crate linkage. See [Crates and Modules (Importing
External Crates)].

e else: fallback for if and if 1let constructs. See [if], [if let].

e enum: defining enumeration. See Enums.

e extern: external crate, function, and variable linkage. See [Crates and
Modules (Importing External Crates)], [Foreign Function Interface].

e false: boolean false literal. See [Primitive Types (Booleans)].

e fn: function definition and function pointer types. See Functions.

e for: iterator loop, part of trait impl syntax, and higher-ranked lifetime
syntax. See [Loops (for)], Method Syntax.

e if: conditional branching. See [if], [if let].

e impl: inherent and trait implementation blocks. See Method Syntax.

e in: part of for loop syntax. See [Loops (for)].

e let: variable binding. See Variable Bindings.

e loop: unconditional, infinite loop. See [Loops (Loop)].

e match: pattern matching. See Match.

e mod: module declaration. See [Crates and Modules (Defining
Modules)].

e move: part of closure syntax. See [Closures (move closures)].

e mut: denotes mutability in pointer types and pattern bindings. See
Mutability.

e pub: denotes public visibility in struct fields, impl blocks, and
modules. See [Crates and Modules (Exporting a Public Interface)].

e ref: by-reference binding. See [Patterns (ref and ref mut)].

e return: return from function. See [Functions (Early Returns)].

e self: implementor type alias. See Traits.

e self: method subject. See [Method Syntax (Method Calls)].

e static: global variable. See [const and static (static)].

® struct: structure definition. See Structs.

e trait: trait definition. See Traits.

e true: boolean true literal. See [Primitive Types (Booleans)].

e type: type alias, and associated type definition. See type_Aliases,
Associated Types.

* unsafe: denotes unsafe code, functions, traits, and implementations.
See [Unsafe].

e use: import symbols into scope. See [Crates and Modules (Importing
Modules with use)].

e where: type constraint clauses. See [Traits (where clause)].

e while: conditional loop. See [Loops (while)].

Operators and Symbols
e | (ident!(..), ident!{..}, ident![..]): denotes macro expansion. See
Macros.
e | (1expr): bitwise or logical complement. Overloadable (vot).
e 1= (var != expr): nonequality comparison. Overloadable
(PartialEq).

(expr % expr): arithmetic remainder. Overloadable (Rem).

= (var %= expr): arithmetic remainder & assignment. Overloadable
(RemAssign).

e & (expr & expr): bitwise and. Overloadable (BitAnd).

* & (sexpr): borrow. See References and Borrowing.

* & (atype, &amut type, &'a type, &'a mut type): borrowed pointer
type. See References and Borrowing.

e 5= (var &= expr): bitwise and & assignment. Overloadable
(BitAndAssign).

%
%

&& (expr && expr): logical and.

* (expr * expr): arithmetic multiplication. Overloadable (Mul).

* (»expr): dereference.

* (rconst type, *mut type): raw pointer. See Raw Pointers.

*= (var *= expr): arithmetic multiplication & assignment.
Overloadable (MulAssign).

+ (expr + expr): arithmetic addition. Overloadable (add).

+ (trait + trait, 'a + trait): compound type constraint. See
[Traits (Multiple Trait Bounds)].

+= (var += expr): arithmetic addition & assignment. Overloadable
(AddAssign).

,. argument and element separator. See Attributes, Functions, Structs,
Generics, Match, Closures, [Crates and Modules (Importing Modules
with use)].

- (expr - expr): arithmetic subtraction. Overloadable (sub).

- (- expr): arithmetic negation. Overloadable (Neg).

-= (var -= expr): arithmetic subtraction & assignment. Overloadable
(SubAssign).

-> (fn(..) -> type, |..| -> type): function and closure return type.
See Functions, Closures.

-> ! (fn(..) -> !, |..| -> 1): diverging function or closure. See

Diverging Functions.
. (expr.ident): member access. See Structs, Method Syntax.

. (..,expr.., ..expr, expr..expr): right-exclusive range literal.

. (. .expr): struct literal update syntax. See [Structs (Update syntax)].
.. (variant(x, ..),struct _type { x, .. }): “and the rest” pattern
binding. See [Patterns (Ignoring bindings)].

(...expr, expr...expr) in an expression: inclusive range
expression. See [terators.
... (expr...expr) in a pattern: inclusive range pattern. See [Patterns
(Ranges)].
/ (expr / expr): arithmetic division. Overloadable (piv).
/= (var /= expr): arithmetic division & assignment. Overloadable
(DivAssign).
: (pat: type, ident: type): constraints. See Variable Bindings,
Functions, Structs, Traits.

: (ident: expr): struct field initializer. See Structs.

: ("a: loop {..}): loop label. See [Loops (Loops Labels)].

; - statement and item terminator.

; ([.; len]): part of fixed-size array syntax. See [Primitive Types
(Arrays)].

<< (expr << expr): left-shift. Overloadable (sh1).

<<= (var <<= expr): left-shift & assignment. Overloadable
(shlassign).

< (expr < expr): less-than comparison. Overloadable (Partialord).
<= (var <= expr): less-than or equal-to comparison. Overloadable
(Partialord).

= (var = expr, ident = type): assignment/equivalence. See Variable
Bindings, type_Aliases, generic parameter defaults.

== (var == expr): equality comparison. Overloadable (PartialEq).

=> (pat => expr): part of match arm syntax. See Match.

> (expr > expr): greater-than comparison. Overloadable
(Partialord).

>= (var >= expr): greater-than or equal-to comparison. Overloadable
(Partialord).

>> (expr >> expr): right-shift. Overloadable (shr).

>>= (var >>= expr): right-shift & assignment. Overloadable
(shrassign).

@ (ident @ pat): pattern binding. See [Patterns (Bindings)].

~ (expr " expr): bitwise exclusive or. Overloadable (Bitxor).

~= (var "= expr): bitwise exclusive or & assignment. Overloadable
(BitXorAssign).

| (expr | expr): bitwise or. Overloadable (Bitor).

| (pat | pat): pattern alternatives. See [Patterns (Multiple patterns)].

| (]..] expr): closures. See Closures.

|= (var |= expr): bitwise or & assignment. Overloadable
(BitOrAssign).

|| (expr || expr): logical or.

_: “ignored” pattern binding (see [Patterns (Ignoring bindings)]). Also
used to make integer-literals readable (see [Reference (Integer
literals)]).

Other Syntax

e 'ident: named lifetime or loop label. See Lifetimes, [L.oops (Loops
Labels)].

e .u8,..i32,..f64,..usize, ...: numeric literal of specific type.

e ".":string literal. See Strings.

o "', r#"."#, r##"."##, raw string literal, escape characters are
not processed. See [Reference (Raw String Literals)].

e b"..": byte string literal, constructs a [u8] instead of a string. See
[Reference (Byte String Literals)].

® br".",br#"."#, br##".."##, raw byte string literal, combination of
raw and byte string literal. See [Reference (Raw Byte String Literals)].

e '..':character literal. See [Primitive Types (char)].

e b'..": ASCII byte literal.

e |..| expr: closure. See Closures.

e ident::ident: path. See [Crates and Modules (Defining Modules)].

e ::path: path relative to the crate root (i.e. an explicitly absolute path).
See [Crates and Modules (Re-exporting with pub use)].

® self::path: path relative to the current module (i.e. an explicitly
relative path). See [Crates and Modules (Re-exporting with pub use)].

e super::path: path relative to the parent of the current module. See
[Crates and Modules (Re-exporting with pub use)].

® type::ident, <type as trait>::ident: associated constants,
functions, and types. See Associated Types.

e <type>::... associated item for a type which cannot be directly named
(e.g. <&T>::..,<[T]>::..,etc.). See Associated Types.
® trait::method(..): disambiguating a method call by naming the trait

which defines it. See Universal Function Call Syntax.

® type::method(..): disambiguating a method call by naming the type
for which it’s defined. See Universal Function Call Syntax.

* <type as trait>::method(..): disambiguating a method call by
naming the trait and type. See [Universal Function Call Syntax
(Angle-bracket Form)].

path<..> (e.g. Vec<u8>): specifies parameters to generic type in a type.
See Generics.

path::<.>, method::<.> (e.g. "42".parse::<i32>()): specifies
parameters to generic type, function, or method in an expression.

fn ident<.> ..: define generic function. See Generics.

struct ident<..> ... define generic structure. See Generics.

enum ident<..> ... define generic enumeration. See Generics.

impl<..> ..: define generic implementation.

for<..> type: higher-ranked lifetime bounds.

type<ident=type> (e.g. Iterator<Item=T>): a generic type where one
or more associated types have specific assignments. See Associated
Types.

T: U: generic parameter T constrained to types that implement u. See
Traits.

T: 'a: generic type T must outlive lifetime 'a. When we say that a
type ‘outlives’ the lifetime, we mean that it cannot transitively contain
any references with lifetimes shorter than 'a.

T : ‘'static: The generic type T contains no borrowed references
other than 'static ones.

'b: 'a: generic lifetime 'b must outlive lifetime 'a.

T: ?Sized: allow generic type parameter to be a dynamically-sized
type. See [Unsized Types (?sized)].

'a + trait, trait + trait: compound type constraint. See [Traits
(Multiple Trait Bounds)].

#[meta]: outer attribute. See Attributes.
#! [meta]: Inner attribute. See Attributes.
$ident: macro substitution. See Macros.
$ident:kind: macro capture. See Macros.
$ (...).... macro repetition. See Macros.

//: line comment. See Comments.

//1: inner line doc comment. See Comments.
///: outer line doc comment. See Comments.
/*..*/: block comment. See Comments.

/*1..%/: inner block doc comment. See Comments.
/**.%/: outer block doc comment. See Comments.

(): empty tuple (a.k.a. unit), both literal and type.
(expr): parenthesized expression.
(expr,): single-element tuple expression. See [Primitive Types

(Tuples)].

(type,): single-element tuple type. See [Primitive Types (Tuples)].
(expr, ..):tuple expression. See [Primitive Types (Tuples)].

(type, ..):tuple type. See [Primitive Types (Tuples)].

expr (expr, ..): function call expression. Also used to initialize tuple
structs and tuple enum variants. See Functions.

ident! (..), ident!{..}, ident![..]: macro invocation. See Macros.
expr.0, expr.1l, ...: tuple indexing. See [Primitive Types (Tuple
Indexing)].

{..}: block expression.
Type {..}: struct literal. See Structs.

[..]1: array literal. See [Primitive Types (Arrays)].

[expr; len]: array literal containing len copies of expr. See
[Primitive Types (Arrays)].

[type; len]: array type containing len instances of type. See
[Primitive Types (Arrays)].

expr[expr]: collection indexing. Overloadable (Index, IndexMut).
expr[..], expr[a..], expr[..b], expr[a..b]: collection indexing
pretending to be collection slicing, using Range, RangeFrom, RangeTo,
RangeFull as the “index”.

Bibliography

This is a reading list of material relevant to Rust. It includes prior research
that has - at one time or another - influenced the design of Rust, as well as
publications about Rust.

Type system

e Region based memory management in Cyclone

e Safe manual memory management in Cyclone

e Typeclasses: making ad-hoc polymorphism less ad hoc

e Macros that work together

e Traits: composable units of behavior

e Alias burying - We tried something similar and abandoned it.
o External uniqueness is unique enough

e Uniqueness and Reference Immutability for Safe Parallelism
e Region Based Memory Management

Concurrency

e Singularity: rethinking the software stack

e Language support for fast and reliable message passing_in singularity
OS

e Scheduling multithreaded computations by work stealing

e Thread scheduling for multiprogramming multiprocessors

e The data locality of work stealing

e Dynamic circular work stealing deque - The Chase/Lev deque

e Work-first and help-first scheduling_policies for async-finish task
parallelism - More general than fully-strict work stealing

e A Java fork/join calamity - critique of Java’s fork/join library,
particularly its application of work stealing to non-strict computation

e Scheduling techniques for concurrent systems

e Contention aware scheduling

e Balanced work stealing for time-sharing multicores

http://209.68.42.137/ucsd-pages/Courses/cse227.w03/handouts/cyclone-regions.pdf
http://www.cs.umd.edu/projects/PL/cyclone/scp.pdf
http://www.ps.uni-sb.de/courses/typen-ws99/class.ps.gz
https://www.cs.utah.edu/plt/publications/jfp12-draft-fcdf.pdf
http://scg.unibe.ch/archive/papers/Scha03aTraits.pdf
http://www.cs.uwm.edu/faculty/boyland/papers/unique-preprint.ps
http://www.cs.uu.nl/research/techreps/UU-CS-2002-048.html
https://research.microsoft.com/pubs/170528/msr-tr-2012-79.pdf
http://www.cs.ucla.edu/~palsberg/tba/papers/tofte-talpin-iandc97.pdf
https://research.microsoft.com/pubs/69431/osr2007_rethinkingsoftwarestack.pdf
https://research.microsoft.com/pubs/67482/singsharp.pdf
http://supertech.csail.mit.edu/papers/steal.pdf
http://www.eecis.udel.edu/~cavazos/cisc879-spring2008/papers/arora98thread.pdf
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2000/locality_spaa00.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.170.1097&rep=rep1&type=pdf
http://www.cs.rice.edu/~yguo/pubs/PID824943.pdf
http://www.coopsoft.com/ar/CalamityArticle.html
http://www.stanford.edu/~ouster/cgi-bin/papers/coscheduling.pdf
http://www.blagodurov.net/files/a8-blagodurov.pdf
http://www.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-12-1.pdf

e Three layer cake for shared-memory_programming

e Non-blocking steal-half work queues

* Reagents: expressing and composing fine-grained concurrency,

e Algorithms for scalable synchronization of shared-memory
multiprocessors

e Epoch-based reclamation.

Others

e Crash-only software
e Composing High-Performance Memory Allocators
e Reconsidering Custom Memory_Allocation

Papers about Rust

e GPU Programming_in Rust: Implementing High Level Abstractions in
a Systems Level Language. Early GPU work by Eric Holk.

» Parallel closures: a new twist on an old idea

o not exactly about Rust, but by nmatsakis

e Patina: A Formalization of the Rust Programming_Language. Early
formalization of a subset of the type system, by Eric Reed.

e Experience Report: Developing_the Servo Web Browser Engine using
Rust. By Lars Bergstrom.

e Implementing_a Generic Radix Trie in Rust. Undergrad paper by
Michael Sproul.

e Reenix: Implementing_a Unix-Like Operating_ System in Rust.
Undergrad paper by Alex Light.

e [Evaluation of performance and productivity metrics of potential
programming languages in the HPC environment]
(http://octarineparrot.com/assets/mrfloya-thesis-ba.pdf). Bachelor’s
thesis by Florian Wilkens. Compares C, Go and Rust.

in Rust. By Geoffroy Couprie, research for VLC.
e Graph-Based Higher-Order Intermediate Representation. An
experimental IR implemented in Impala, a Rust-like language.

http://dl.acm.org/citation.cfm?id=1953616&dl=ACM&coll=DL&CFID=524387192&CFTOKEN=44362705
http://www.cs.bgu.ac.il/~hendlerd/papers/p280-hendler.pdf
http://www.mpi-sws.org/~turon/reagents.pdf
https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/candea.pdf
http://people.cs.umass.edu/~emery/pubs/berger-pldi2001.pdf
http://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://www.cs.indiana.edu/~eholk/papers/hips2013.pdf
https://www.usenix.org/conference/hotpar12/parallel-closures-new-twist-old-idea
ftp://ftp.cs.washington.edu/tr/2015/03/UW-CSE-15-03-02.pdf
http://arxiv.org/abs/1505.07383
https://michaelsproul.github.io/rust_radix_paper/rust-radix-sproul.pdf
http://scialex.github.io/reenix.pdf
http://spw15.langsec.org/papers/couprie-nom.pdf
http://compilers.cs.uni-saarland.de/papers/lkh15_cgo.pdf

Code Refinement of Stencil Codes. Another paper using Impala.
Parallelization in Rust with fork-join and friends. Linus Farnstrand’s
master’s thesis.

Session Types for Rust. Philip Munksgaard’s master’s thesis. Research
for Servo.

Ownership is Theft: Experiences Building_an Embedded OS in Rust -
Amit Levy,et. al.

You can’t spell trust without Rust. Alexis Beingessner’s master’s
thesis.

http://compilers.cs.uni-saarland.de/papers/ppl14_web.pdf
http://publications.lib.chalmers.se/records/fulltext/219016/219016.pdf
http://munksgaard.me/papers/laumann-munksgaard-larsen.pdf
http://amitlevy.com/papers/tock-plos2015.pdf
https://raw.githubusercontent.com/Gankro/thesis/master/thesis.pdf

	Introduction
	Contributing

	Getting Started
	Installing Rust
	Hello, world!
	Hello, Cargo!
	Closing Thoughts

	Tutorial: Guessing Game
	Set up
	Processing a Guess
	Generating a secret number
	Comparing guesses
	Looping
	Complete!

	Syntax and Semantics
	Variable Bindings
	Patterns
	Type annotations
	Mutability
	Initializing bindings
	Scope and shadowing

	Functions
	Primitive Types
	Booleans
	char
	Numeric types
	Arrays
	Slices
	str
	Tuples
	Functions

	Comments
	if
	Loops
	Vectors
	Ownership
	Meta
	Ownership
	Move semantics
	More than ownership

	References and Borrowing
	Meta
	Borrowing
	&mut references
	The Rules

	Lifetimes
	Meta
	Lifetimes
	In structs

	Mutability
	Interior vs. Exterior Mutability

	Structs
	Update syntax
	Tuple structs
	Unit-like structs

	Enums
	Constructors as functions

	Match
	Matching on enums

	Patterns
	Multiple patterns
	Destructuring
	Ignoring bindings
	ref and ref mut
	Ranges
	Bindings
	Guards
	Mix and Match

	Method Syntax
	Method calls
	Chaining method calls
	Associated functions
	Builder Pattern

	Strings
	Generics
	Traits
	Rules for implementing traits
	Multiple trait bounds
	Where clause
	Default methods
	Inheritance
	Deriving

	Drop
	if let
	Trait Objects
	Closures
	Syntax
	Closures and their environment
	Closure implementation
	Taking closures as arguments
	Function pointers and closures
	Returning closures

	Universal Function Call Syntax
	Angle-bracket Form

	Crates and Modules
	Basic terminology: Crates and Modules
	Defining Modules
	Multiple File Crates
	Importing External Crates
	Exporting a Public Interface
	Importing Modules with use

	const and static
	static
	Initializing
	Which construct should I use?

	Attributes
	type aliases
	Casting between types
	Coercion
	as
	transmute

	Associated Types
	Unsized Types
	?Sized

	Operators and Overloading
	Using operator traits in generic structs

	Deref coercions
	Macros
	Defining a macro
	Hygiene
	Recursive macros
	Debugging macro code
	Syntactic requirements
	Scoping and macro import/export
	The variable $crate
	The deep end
	Common macros
	Procedural macros

	Raw Pointers
	Basics
	FFI
	References and raw pointers

	unsafe
	What does ‘safe’ mean?
	Unsafe Superpowers

	Effective Rust
	The Stack and the Heap
	Memory management
	The Stack
	The Heap
	Arguments and borrowing
	A complex example
	What do other languages do?
	Which to use?

	Testing
	The test attribute
	The ignore attribute
	The tests module
	The tests directory
	Documentation tests

	Conditional Compilation
	cfg_attr
	cfg!

	Documentation
	Iterators
	Concurrency
	Error Handling
	Table of Contents
	The Basics
	Working with multiple error types
	Standard library traits used for error handling
	Case study: A program to read population data
	The Short Story

	Choosing your Guarantees
	Basic pointer types
	Cell types
	Synchronous types
	Composition

	FFI
	Introduction
	Creating a safe interface
	Destructors
	Callbacks from C code to Rust functions
	Linking
	Unsafe blocks
	Accessing foreign globals
	Foreign calling conventions
	Interoperability with foreign code
	The “nullable pointer optimization”
	Calling Rust code from C
	FFI and panics
	Representing opaque structs

	Borrow and AsRef
	Borrow
	AsRef
	Which should I use?

	Release Channels
	Overview
	Choosing a version
	Helping the ecosystem through CI

	Using Rust without the standard library

	Nightly Rust
	Compiler Plugins
	Introduction
	Syntax extensions
	Lint plugins

	Inline Assembly
	No stdlib
	Intrinsics
	Lang items
	Advanced linking
	Link args
	Static linking

	Benchmark Tests
	Box Syntax and Patterns
	Returning Pointers

	Slice Patterns
	Associated Constants
	Custom Allocators
	Default Allocator
	Switching Allocators
	Writing a custom allocator
	Custom allocator limitations

	Glossary
	Syntax Index
	Bibliography

